POSITION-BASED SIMULATION OF ELASTIC
MODELS ON THE GPU WITH ENERGY
AWARE GAUSS-SEIDEL ALGORITHM

Ozan Cetinaslan

Instituto de Telecomunicacoes & Faculdade de Ciéncias, Universidade do
Porto, Portugal

instituto de
telecomunicacGes

PORTO 't
i

Introduction

Physics-based visual simulations have become ubiquitous in movies, cartoons,
medical applications and computer games.

o~
Collapsed Buildings, 2012 © DigitalDomain

; ; Assassin’s Creed, © Ubisoft
Sulley from Monsters Inc, © Disney/Pixar Medical App. © VirtaMed

I Introduction

Physics-based Simulations
Imitate the life-like motions!

Introduction

To achieve physics-based simulations, numerical methods are employed:

- Integration Methods
- Implicit / Explicit Euler methods
- Verlet method
- Second Order Integration method
- Runge—Kutta method

- Iteration Approaches
- Newton’s method
- Jacobi method
- Gauss-Seidel method

Introduction

Muller, M., Heidelberger B., Hennix M., Ratcliff J.,

"Position Based Dynamics "

VRIPhys, 2006

Journal of Visual Communication and Image Representation, 2007

Introduction

Position Based Dynamics (PBD):
- Integration Methods

- Verlet method
- Second Order Integration method [Bender et al. 17]

- [teration Methods

- Jacobi method [Macklin et al. 14]
- Gauss-Seidel method

I Introduction

The main idea is to consider the mass-spring networks as connected particles

Introduction

In a very general perpective, PBD algorithm:
- First, shoots the particles with the integration method.
- After, pulls them back with the non-linear Gauss-Seidel iteration.

Introduction

In a very general perpective, PBD algorithm:
- First, shoots the particles with the integration method.
- After, pulls them back with the non-linear Gauss-Seidel iteration.

.

Introduction

That implies:

- Verlet integration predicts the position of a particle

- Gauss-Seidel loop iterates the particle till the final position is obtained
- Gauss-Seidel iteration operates based on projected constraints.

1. Position of the particle

/ > © Predicted Position

Final Position

Body of the Model

Motivation

Due to extreme dependency to Gauss-Seidel:

- Is it possible to improve the visual results within Gauss-Seidel on
the GPU?

XPBD Our Method

(Neo - Hookean Material Constraint) (Neo - Hookean Material Constraint)

PBD In Literature

Faure, F.,
“Interactive Solid Animation Using Linearized Displacement Constraints”
Computer Animation and Simulation Workshop, 1998

Jakobsen, T.,
“Advanced Character Physics”
Proceedings of the Game Developers Conference, 2001

b i

D e Stam J.,
;l k "Nucleus: Towards a Unified Dynamics Solver for Computer Graphics"
' Proceedings of Computer-Aided Design and Computer Graphics, 2009
P T, T

éf [S

PBD In Literature

Wrinkle Meshes

Maithias Milller & Nuttapong Chentanez

NVIDLA

Solid Simulation with Oriented Particles

Matthias Miiller Muttapong Chentanez

NVIDIA PhysX Research

Long Range Attachments - A Method to Simulate
Inextensible Clothing in Computer Games

Tae-Yong Kim, Nuttapong Chentanez and Martthias Miiller-Fischer'

NVIDIA Phy=X Research

Fast Simulation of Inextensible Hair and Fur

M. Miiller T.¥. Kim N. Chentanez

Mvidia PhysX Research

Position Based Fluids

Miles Macklin * Matthias Miiller

NVIDIA

Strain Based Dynamics

Matthias Miller Muttapong Chentanez Tae-Yong Kim Miles Macklin

NVIDIA

Position-Based Simulation of Continuous Materials

Jan Bender®, Dan Koschier®, Patrick Charrier®, Daniel Weber®

4 raduate School CE, TU Darmstadt
b Praunhofer IGD, Darmstad:

Direct Position-Based Solver for Stiff Rods

Crispin Deul", Tassilo Kugelstadt® Marcel Weiler! and Jan Bender”

IGraduate School CE, TU Darmstadt
* RWTH Aachen University

I General (X)PBD Algorithm

X"l =x"+ v'h + h2wf,,
initialize total Lagrange multiplier A, = 0,
while k < Iterations do
for all constraints do
GAUSS-SEIDEL PROCESS
end for
k=k+1
end while
update x"*1

update velocity vt = (x"*1- x") / h

I Verlet Integration

X"+l = x" +vhh + h2wf_,
initialize total Lagrange multiplier A, = 0,
while k < Iterations do
for all constraints do
GAUSS-SEIDEL PROCESS
end for
k=k+1
end while
update x"+1

update velocity vl = (x"*1-x") / h

I Verlet Integration

xN+l = yn 4 (Xn _ Xn-l) + thifext
Initialize total Lagrange multiplier A, = 0,
while k < Iterations do
for all constraints do
GAUSS-SEIDEL PROCESS
end for
k=k+1
end while
update x"*1

| Ipdate ”elgeitf‘ Uﬂ%_—@(n#l_-%ﬁ)—/—h

I Gauss-Seldel Process

After, the displacements of each point is calculated with a constraint function:

(C(x+ Ax) = 0)

With the help of 1st order Taylor-expansion:

(C(x+Ax) = C(x) + VxC(x) - Ax = 0)

Position updates are obtained as:

I Gauss-Seldel Process

In the recent extension to PBD (XPBD):

XPBD: Position-Based Simulation of Compliant Constrained Dynamics

Miles Macklin Matthias Miiller Muttapong Chentanez

NVIDIA

Position updates are associated with compliance stiffness matrix in order to
prevent iteration count and step-size dependency:

C(JC) 6{.7\,5

I Gauss-Seldel Process

XM =x"+ (X" —x"1) + h2wf,,
Initialize total Lagrange multiplier A, = 0,
while k < Iterations do

for all constraints do

compute AA and Ax

A1 = N+ AA
X1 = Xg + BX
end for
k=k+1

end while
update x"*1

I Energy Aware Gauss-Seidel Algorithm

/ Initial Position

Final Position

> © Predicted Position

Body of the Model

I Energy Aware Gauss-Seidel Algorithm

Integration

> @ Predicted Position

/ Gauss-Seidel

—

Initial Position

Final Position

Body of the Model

I Energy Aware Gauss-Seidel Algorithm

Integration %o Predicted Position

Initial Position /
/

d |
e Gauss-Seidel

Final Position

Body of the Model

I Energy Aware Gauss-Seidel Algorithm

o Predicted Position

Gauss-Seidel

Final Position
Body of the Model

\ J J
| | | |
AX AX Ax AX
4.it. 3.it. 2.1t. 1.it.

I Energy Aware Gauss-Seidel Algorithm
/Qredcted Position

e

Gauss-Seidel

Final Position
Body of the Model

\ J J
| | | |
AX AX Ax AX
4.it. 3.it. 2.1t. 1.it.

I Energy Aware Gauss-Seidel Algorithm

o (Xn)k

/

o (Xn)k+1

/

O (XN)k+2
e

o (Xn)k+3

I Energy Aware Gauss-Seidel Algorithm

o (Xn)k

e

o (Xn)k+1

I Energy Aware Gauss-Seidel Algorithm

o (Xn)k

e

What al;%)}pxlﬁ’eximmicit
wvelocities?
'

o (Xn)k+3

I Energy Aware Gauss-Seidel Algorithm

Vk —_ (Xn)k+1 - (Xn)k
o (Xn)k+1
o (Xn)k+2

o (Xn)k+3

I Energy Aware Gauss-Seidel Algorithm

o (Xn)k

Vk — (Xn)k+1 - (Xn)k
o (Xn)k+1

Vk+1 — (Xn)k+2 _ (Xn)k

o (Xn)k+2

o (Xn)k+3

I Energy Aware Gauss-Seidel Algorithm

o (Xn)k

Vk — (Xn)k+1 - (Xn)k
o (Xn)k+1

Vk+1 — (Xn)k+2 - (Xn)k

o (Xn)k+2

Vk+2 o (Xn)k+3 _ (Xn)k

o (Xn)k+3

I Energy Aware Gauss-Seidel Algorithm

Now, what do we know within the Gauss-Seidel Alg.:
- Positions

- Position changes

- Implicit velocities

- Constraint values (Potential energy values)

I Energy Aware Gauss-Seidel Algorithm

Now, what do we know within the Gauss-Seidel Alg.:
- Positions

- Position changes

- Implicit velocities

- Constraint values (Potential energy values)

Is It posible to create an energy balance within
the Gauss-Seidel iteration?

Energy Aware Gauss-Seidel Algorithm

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

Energy Conservation for the Simulation of
Deformable Bodies

Jonathan Su, Rahul Sheth, and Ronald Fedkiw

Su et al. (2012) applied the conservation principle to a mass-spring network
where:

- Velocities are based on forces.
- Hooke’s law dominates the framework.
- There is an integration dependency.

I Energy Aware Gauss-Seidel Algorithm

However, inspired by their work, we alter the Gauss-Seidel Algorithm with the
energy balance in its each iteration:

That means each iteration satisfies:

AKE = - APE

I Energy Aware Gauss-Seidel Algorithm

However, inspired by their work, we alter the Gauss-Seidel Algorithm with the
energy balance in its each iteration:

That means each iteration satisfies:

AKE = - APE

R T T Eee)

I Energy Aware Gauss-Seidel Algorithm

o (Xn)k
o (Xn)k+1
AE = - APE |

o (Xn)k+2
/IA/KE = - APE |

o (Xn)k+3

I Energy Aware Gauss-Seidel Algorithm

/IAKE+APE:€ I
o (Xn)k+1
AE+APE:€ |

o (Xn)k+2
AE +APE = ¢ I

o (Xn)k+3

I Energy Aware Gauss-Seidel Algorithm

/IAKE +APE=¢ |
. . 2
/ O (XK 1| c(x¥) = c(x¥)+ e |
| AKE+APE=¢ |
o (Xn)k+2 v

/ | c(x*) = c(x¥)+e |
| AKE +APE=¢ |

\ 4
O(X”)k+3 [c(x¥) = c(x¥)+ € |

I Energy Aware Gauss-Seidel Algorithm

Integration

Predicted Position

Initial Position

AKE = - APE

Final Position
Body of the Model

Gauss-Seidel
with Energy
Balance

I Mesh Coloring Alg.

Connectivity of the particles is a limitation for parallelism:

I Mesh Coloring Alg.

This limitation is the well-known race condition which is the attack of many
threads to one particle simultaneously:

I Mesh Coloring Alg.

In order to avoid race condition, we have to partition the mesh structure:

I Mesh Coloring Alg.

This partitioning has to be done in such a way that none of the elements share
any connectivity:

w—

! 13

I Mesh Coloring Alg.

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:

I Mesh Coloring Alg.

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:
- It is a two step algorithm:

Mesh Coloring Alg.

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:

- It is a two step algorithm:
- First, a non-adjacent array list for each member is created:

1 6

8 13 14]

10 13 14]

8 9 14 15]
10 11 15]

10 11 12 14]
10 11 15]

8 11 13 15]
10 11 12]

6 9 12]

10 13 14]

[= R R OO,
Lo = = D D L e LWt
(b B N T N T Y Sl 1 B s T . BN [
0 D =] D 0 D —] O -]

S o

5 7 9 12 13]

6 7 13 14]

10 13 14]

9 10 11 12 15]
49 11 12 15
6 13 14]

O e)
(S B S o o

A =W =Ty

\) \)
1 I

Mesh - Before Coloring Non-Adjacent Array List

Mesh Coloring Alg.

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:

- It is a two step algorithm:

- Second, colored groups are obtained from the non-adjacent array list:

1 6

Mesh - Before Coloring

0—
1 —
2 —
3=
4 —
5=
6 —
7=
8 —
9 —

11 =
12 —
13 —
14 —
15 —

o e o o

o=y

10 =

W =W =S O

W = = W e OtwWL,

IR WSS -1

4
5
8
6
2

S~ O Lo~

=

8 13 14
10 13 14]
8 9 14 15
10 11 15]
10 11 12 14]
10 11 15]
8 11 13 15]
10 11 12]
6 9 12|
10 13 14]
5 7 9 12 13]
6 7 13 14]
10 13 14]

9 10 11 12 15]

49 11 12 15

5 6 13 14]

|

»

Group 1 — [0
Group 2 — [1
Group 3 — [3
Group 4 — [1
Group 5 — [1
Group 6 — [1

]

4 15]

Non-Adjacent Array List

Y
Colored Groups

Mesh Coloring Alg.

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:

- It is a two step algorithm:

- Second, independent edges list is obtained from the non-adjacent array list:

1 6

0—=[4 5 6 7 8 13 14]
1=[2 3 7 8 10 13 14
21 5 6 7 8 9 14 15]
31 4 6 9 10 11 15]
4=[0 3 5 8 10 11 12 14]
5[0 2 4 9 10 11 15]
60 2 3 7 8 11 13 15]
T=[0 1 2 6 10 11 12]
8=[0 1 2 4 6 9 12
9—=1[2 3 5 8 10 13 14]
0—=[1 3 4 5 7 9 12 13
=3 4 5 6 7 13 14]
124 7 8 10 13 14]
13=0 1 6 9 10 11 12 15]
4—=[0 1 2 4 9 11 12 15]
15—=(2 3 5 6 13 14]

\ J | J

I I

Mesh - Before Coloring

Non-Adjacent Array List

Group 1 — [U 4
Group 2 — [1 2
Group 3 — [3 6
Group 4 — |
Group 5 — [
[

12
13 }
Group 6 — |14

Y
Colored Groups

Mesh — After Coloring

Constraints

x2
12
L
- ™
X, O--- -0 X, Y123
— <«
AX, AX,
X X
1 3 X,
—1
Ctreten(X1,X2) = [x2 —x1| =12 Chend (X1,X%2,X3,%4) = cos (N123-Ni24) — 01234

.
Cshear(X1.X2,X3) = cos (M2 -M13) — Y123

Constraints

81234 /}\2
N,
X, | 2
X4
12
X1 X5 Y1
— —
AX, AX, X,
X X
1 3 X3
~ - N N . N . _1
Citretch (X1 g~ [x2 — x1| — 12 Chend (X1,X2,X3,X4) = CO! 123 N124) — 01234

~

1
Csnear(X1.X2.Xx3) = cos (My2-M13) — V123

Constraints

2D Meshes:

Hookean Spring:

1 2
CHookean(xlaXZ) — Ek(| ‘XZ — X || - ZO)

Liuetal 13

STVK Spring:

1 2 232
Cstvisp. (x1,x2) = Ek(HXZ —xi||” = 1H)

Junior et al. 18

Ani. Cont. Cloth:

roft ‘weft Vwarp
kw eft Kwett v 0
I —VweftVwarp 1 —VweftVwarp
(— kwarp Vweft kwa.rp 0
I —VweftVwarp 1 —VweftVwarp
0 0 kshoa.r

Bender et al. 14

Constraints
3D Meshes:

Linear Elastic Material:

A >
WiinElas = 16 &+ St (€)

Sifakis & Barbic 12

STVK Elastic Material:

A
Yovre, =uG: G+ 5“’ (G)

Bender et al. 14

Neo-Hookean Elastic Material;

\PN eoH

(Nl =

(1 —tog(ly) =3) + Flog(1)

Bender et al. 14

Mooney-Rivlin Elastic Material:

‘PM()()RI'V —

/2

L2 —1 I
HOL 2 6) + o= —3) +vi (1) = 1)?

2]2/3

1/3
; I

3

Sinetal. 13

Arruda-Boyce Elastic Material:

n . .
lIJArrBo — Z OLi(lll — 31)
i=1

Smith et al. 18

CPU vs GPU

Cloth 4880 3220 30 17-18 50-51
Bunny 12288 8192 15 2-3 37-38

Results

XPBD
(STVK Spring Constraint)

Our Method
(STVK Spring Constraint)

|
=
o

|
=
n

|
N
=)

|
g
&)

|
w
=)

-35

Log Rel. Err. of Hanging Cloth with STVK Spring

— Our Method |
— XPBD
200 200 600 800 1000

Frame Number (Time)

Results

XPBD

(Anisotropic Continuous Material

Constraint)

Our Method
(Anisotropic Continuous Material
Constraint)

Log Rel. Err. of Hanging Cloth with Aniso. Cont. Mat.

— Our Method ||
— XPBD
0 200 200 600 800 1000

Frame Number (Time)

Results

|
=

|
)
T

w
T

|
IS
I

w

o

-~
T

— Our Method ||

Log Rel. Err. of Hanging Bunny with STVK Mat.

|
co

— XPBD

(=]

Frame Number (Time)

Our Method
(St. Venant Kirchhoff Material Constraint)

(St. Venant Kirchhoff Material Constraint)

800 1000

Results

Log Rel. Err. of Hanging Bunny with NeoH. Mat.

— Our Method
— XPBD
200 200 600 800 1000

Frame Number (Time)

Results

. Our Method
(Linear Elastic Material Constraint) (Linear Elastic Material Constraint)

XPBD Our Method

(St. Venant Kirchhoff Material Constraint) (St. Venant Kirchhoff Material Constraint)

XPBD Our Method

(Neo - Hookean Material Constraint) (Neo - Hookean Material Constraint)

Results

I Summary

-In this paper, we:

- extend the Gauss-Seidel iteration of (X)PBD algorithm with the
energy balances

I Summary

-In this paper, we:

- extend the Gauss-Seidel iteration of (X)PBD algorithm with the
energy balances

- present our intuitive Mesh Coloring Alg. for parallel processing on
GPU

I Summary

-In this paper, we:

- extend the Gauss-Seidel iteration of (X)PBD algorithm with the
energy balances

- present our intuitive Mesh Coloring Alg. for parallel processing on
GPU

- present the results by using many spring and constitutive
material potentials

I Summary

-In this paper, we:
- extend the Gauss-Seidel iteration of (X)PBD algorithm with the
energy balances

- present our intuitive Mesh Coloring Alg. for parallel processing on
GPU

- present the results by using many spring and constitutive
material potentials

- show that our method is:

- straightforward, stable and easy to adapt to existing
frameworks.

THANK YOU!

