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Introduction 

Physics-based visual simulations have become ubiquitous in movies, cartoons, 

medical applications and computer games. 
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Introduction 

Physics-based Simulations 

imitate the life-like motions! 
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Introduction 

To achieve physics-based simulations, numerical methods are employed: 

• Integration Methods 

• Implicit / Explicit Euler methods 

• Verlet method 

• Second Order Integration method 

• Runge–Kutta method 

• … 

• Iteration Approaches 

• Newton’s method 

• Jacobi method 

• Gauss-Seidel method 

4 



Introduction 
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"Position Based Dynamics "  
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Introduction 

Position Based Dynamics (PBD): 

• Integration Methods 

• Implicit / Explicit Euler methods 

• Verlet method 

• Second Order Integration method [Bender et al. 17] 

• Runge–Kutta method 

• … 

• Iteration Methods 

• Newton’s method 

• Jacobi method [Macklin et al. 14] 

• Gauss-Seidel method 
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Introduction 
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The main idea is to consider the mass-spring networks as connected particles 

[Stam 2009] 



Introduction 
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In a very general perpective, PBD algorithm: 

• First, shoots the particles with the integration method. 

• After, pulls them back with the non-linear Gauss-Seidel iteration. 



Introduction 
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In a very general perpective, PBD algorithm: 

• First, shoots the particles with the integration method. 

• After, pulls them back with the non-linear Gauss-Seidel iteration. 



Introduction 

That implies: 

• Verlet integration predicts the position of a particle 

• Gauss-Seidel loop iterates the particle till the final position is obtained 

• Gauss-Seidel iteration operates based on projected constraints. 
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Body of the Model 

1. Position of the particle 

Predicted Position 

Final Position 



Motivation 

Due to extreme dependency to Gauss-Seidel: 

• Is it possible to improve the visual results within Gauss-Seidel on 

the GPU? 
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PBD in Literature 
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“Interactive Solid Animation Using Linearized Displacement Constraints” 
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PBD in Literature 
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General (X)PBD Algorithm 

xn+1 = xn + vnh + h2wifext 

initialize total Lagrange multiplier λ0 = 0, 

while k < Iterations do 

 for all constraints do 

  GAUSS-SEIDEL PROCESS 

  end for 

 k = k +1 

end while 

update xn+1 

update velocity vn+1 = (xn+1 - xn) / h 
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Verlet Integration 

xn+1 = xn + vnh + h2wifext 

initialize total Lagrange multiplier λ0 = 0, 

while k < Iterations do 

 for all constraints do 

  GAUSS-SEIDEL PROCESS 

  end for 

 k = k +1 

end while 

update xn+1 

update velocity vn+1 = (xn+1 - xn) / h 
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Verlet Integration 

xn+1 = xn + (xn – xn-1) + h2wifext 

initialize total Lagrange multiplier λ0 = 0, 

while k < Iterations do 

 for all constraints do 

  GAUSS-SEIDEL PROCESS 

  end for 

 k = k +1 

end while 

update xn+1 

update velocity vn+1 = (xn+1 - xn) / h 
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Gauss-Seidel Process 

After, the displacements of each point is calculated with a constraint function: 

 

 

With the help of 1st order Taylor-expansion: 

 

 

Position updates are obtained as: 
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where 



Gauss-Seidel Process 

In the recent extension to PBD (XPBD):  

 

 

 

Position updates are associated with compliance stiffness matrix in order to 

prevent iteration count and step-size dependency: 
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where 



Gauss-Seidel Process 

xn+1 = xn + (xn – xn-1) + h2wifext 

initialize total Lagrange multiplier λ0 = 0, 

while k < Iterations do 

 for all constraints do 

  compute Δλ and Δx 

  λk+1 = λk + Δλ 

  xk+1 = xk + Δx 

  end for 

 k = k +1 

end while 

update xn+1 
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Energy Aware Gauss-Seidel Algorithm 
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Body of the Model 

Initial Position 

Predicted Position 

Final Position 



Energy Aware Gauss-Seidel Algorithm 
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Initial Position 

Predicted Position 
Integration 

Gauss-Seidel 

Final Position 

Body of the Model 



Energy Aware Gauss-Seidel Algorithm 
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Body of the Model 

Initial Position 

Predicted Position 

Final Position 

Integration 

Gauss-Seidel 



Energy Aware Gauss-Seidel Algorithm 
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Predicted Position 

Body of the Model 

Final Position 

Δx Δx Δx Δx 

Gauss-Seidel 

1.it. 2.it. 3.it. 4.it. 



Energy Aware Gauss-Seidel Algorithm 
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Predicted Position 

Body of the Model 

Final Position 

Δx Δx Δx Δx 

Gauss-Seidel 

1.it. 2.it. 3.it. 4.it. 



Energy Aware Gauss-Seidel Algorithm 
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(xn)k 

(xn)k+1 

(xn)k+2 

(xn)k+3 



Energy Aware Gauss-Seidel Algorithm 
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(xn)k 

(xn)k+1 

(xn)k+2 

(xn)k+3 

Δx 

Δx 

Δx 



Energy Aware Gauss-Seidel Algorithm 
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(xn)k 

(xn)k+1 

(xn)k+2 

(xn)k+3 

Δx 

Δx 

Δx 

What about the implicit 

velocities? 



Energy Aware Gauss-Seidel Algorithm 
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(xn)k 

(xn)k+1 

(xn)k+2 

(xn)k+3 

Vk = (xn)k+1 - (xn)k 



Energy Aware Gauss-Seidel Algorithm 
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(xn)k 

(xn)k+1 

(xn)k+2 

(xn)k+3 

Vk = (xn)k+1 - (xn)k 

Vk+1 = (xn)k+2 - (xn)k 



Energy Aware Gauss-Seidel Algorithm 
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(xn)k 

(xn)k+1 

(xn)k+2 

(xn)k+3 

Vk = (xn)k+1 - (xn)k 

Vk+1 = (xn)k+2 - (xn)k 

Vk+2 = (xn)k+3 - (xn)k 



Energy Aware Gauss-Seidel Algorithm 

Now, what do we know within the Gauss-Seidel Alg.: 

• Positions 

• Position changes 

• Implicit velocities 

• Constraint values (Potential energy values) 

31 



Energy Aware Gauss-Seidel Algorithm 

Now, what do we know within the Gauss-Seidel Alg.: 

• Positions 

• Position changes 

• Implicit velocities 

• Constraint values (Potential energy values) 
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Is it posible to create an energy balance within 

the Gauss-Seidel iteration? 



Energy Aware Gauss-Seidel Algorithm 

 

 

 

 

 

Su et al. (2012) applied the conservation principle to a mass-spring network 

where:  

• Velocities are based on forces. 

• Hooke’s law dominates the framework. 

• There is an integration dependency. 
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Energy Aware Gauss-Seidel Algorithm 

However, inspired by their work, we alter the Gauss-Seidel Algorithm with the 

energy balance in its each iteration: 

 

That means each iteration satisfies: 
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ΔKE = - ΔPE  



Energy Aware Gauss-Seidel Algorithm 

However, inspired by their work, we alter the Gauss-Seidel Algorithm with the 

energy balance in its each iteration: 

 

That means each iteration satisfies: 
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ΔKE = - ΔPE  

𝟏

𝟐
𝒎 𝑽𝒌+𝟏 𝑻

𝑽𝒌+𝟏  − 𝑽𝒌 𝑻
𝑽𝒌 = −[𝑪 𝒙𝒏 𝒌 − 𝑪 𝒙𝒏−𝟏 ] 



Energy Aware Gauss-Seidel Algorithm 
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(xn)k 

(xn)k+1 

(xn)k+2 

(xn)k+3 

ΔKE = - ΔPE  

ΔKE = - ΔPE  

ΔKE = - ΔPE  



Energy Aware Gauss-Seidel Algorithm 
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(xn)k 

(xn)k+1 

(xn)k+2 

(xn)k+3 

ΔKE + ΔPE = ϵ 

ΔKE + ΔPE = ϵ 

ΔKE + ΔPE = ϵ 



Energy Aware Gauss-Seidel Algorithm 
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(xn)k 

(xn)k+1 

(xn)k+2 

(xn)k+3 

ΔKE + ΔPE = ϵ 

ΔKE + ΔPE = ϵ 

ΔKE + ΔPE = ϵ 

𝑪 𝒙𝒌 = 𝑪 𝒙𝒌 + ∈ 

𝑪 𝒙𝒌 = 𝑪 𝒙𝒌 + ∈ 

𝑪 𝒙𝒌 = 𝑪 𝒙𝒌 + ∈ 



Energy Aware Gauss-Seidel Algorithm 
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Body of the Model 

Initial Position 

Predicted Position 

Final Position 

Integration 

Gauss-Seidel 

with Energy 

Balance 

ΔKE = - ΔPE  



Mesh Coloring Alg. 

Connectivity of the particles is a limitation for parallelism:  
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[Stam 2009] 



Mesh Coloring Alg. 

This limitation is the well-known race condition which is the attack of many 

threads to one particle simultaneously:  
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Mesh Coloring Alg. 

In order to avoid race condition, we have to partition the mesh structure:  
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Mesh Coloring Alg. 

This partitioning has to be done in such a way that none of the elements share 

any connectivity:  
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Mesh Coloring Alg. 

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:  
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Mesh Coloring Alg. 

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:  

• It is a two step algorithm: 
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Mesh Coloring Alg. 

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:  

• It is a two step algorithm: 

• First, a non-adjacent array list for each member is created: 
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Mesh Coloring Alg. 

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:  

• It is a two step algorithm: 

• Second, colored groups are obtained from the non-adjacent array list: 
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Mesh Coloring Alg. 

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:  

• It is a two step algorithm: 

• Second, independent edges list is obtained from the non-adjacent array list: 
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Constraints 
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Constraints 
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Constraints 
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2D Meshes: 

Hookean Spring: 

STVK Spring: 

Ani. Cont. Cloth: 

Liu et al. 13 

Junior et al. 18 

Bender et al. 14 



Constraints 
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3D Meshes: 

Linear Elastic Material: 

STVK Elastic Material: 

Neo-Hookean Elastic Material: 

Mooney-Rivlin Elastic Material: 

Arruda-Boyce Elastic Material: 

Bender et al. 14 

Bender et al. 14 

Sin et al. 13 

Smith et al. 18 

Sifakis & Barbic 12 



Results 
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Model # of Edges # of Faces # of 

Iteration 

CPU (FPS) GPU (FPS) 

Cloth 4880 3220 30 17-18 50-51 

Bunny 12288 8192 15 2-3 37-38 



Results 
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Summary 
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• In this paper, we: 
• extend the Gauss-Seidel iteration of (X)PBD algorithm with the 

energy balances 
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• In this paper, we: 
• extend the Gauss-Seidel iteration of (X)PBD algorithm with the 

energy balances 

• present our intuitive Mesh Coloring Alg. for parallel processing on 

GPU 
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• In this paper, we: 
• extend the Gauss-Seidel iteration of (X)PBD algorithm with the 

energy balances 

• present our intuitive Mesh Coloring Alg. for parallel processing on 

GPU 

• present the results by using many spring and constitutive 

material potentials 
 

 

 



Summary 
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• In this paper, we: 
• extend the Gauss-Seidel iteration of (X)PBD algorithm with the 

energy balances 

• present our intuitive Mesh Coloring Alg. for parallel processing on 

GPU 

• present the results by using many spring and constitutive 

material potentials 

• show that our method is: 

• straightforward, stable and easy to adapt to existing 

frameworks. 

 
 

 

 

 



 

 

 

 

 

THANK YOU! 
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