
POSITION-BASED SIMULATION OF ELASTIC

MODELS ON THE GPU WITH ENERGY

AWARE GAUSS-SEIDEL ALGORITHM

Ozan Cetinaslan

Instituto de Telecomunicações & Faculdade de Ciências, Universidade do

Porto, Portugal

Introduction

Physics-based visual simulations have become ubiquitous in movies, cartoons,

medical applications and computer games.

2

Assassin’s Creed, © Ubisoft

Collapsed Buildings, 2012 © DigitalDomain

Sulley from Monsters Inc, © Disney/Pixar
Medical App. © VirtaMed

Introduction

Physics-based Simulations

imitate the life-like motions!

3

Introduction

To achieve physics-based simulations, numerical methods are employed:

• Integration Methods

• Implicit / Explicit Euler methods

• Verlet method

• Second Order Integration method

• Runge–Kutta method

• …

• Iteration Approaches

• Newton’s method

• Jacobi method

• Gauss-Seidel method

4

Introduction

5

Muller, M., Heidelberger B., Hennix M., Ratcliff J.,

"Position Based Dynamics "

VRIPhys, 2006

Journal of Visual Communication and Image Representation, 2007

Introduction

Position Based Dynamics (PBD):

• Integration Methods

• Implicit / Explicit Euler methods

• Verlet method

• Second Order Integration method [Bender et al. 17]

• Runge–Kutta method

• …

• Iteration Methods

• Newton’s method

• Jacobi method [Macklin et al. 14]

• Gauss-Seidel method

6

Introduction

7

The main idea is to consider the mass-spring networks as connected particles

[Stam 2009]

Introduction

8

In a very general perpective, PBD algorithm:

• First, shoots the particles with the integration method.

• After, pulls them back with the non-linear Gauss-Seidel iteration.

Introduction

9

In a very general perpective, PBD algorithm:

• First, shoots the particles with the integration method.

• After, pulls them back with the non-linear Gauss-Seidel iteration.

Introduction

That implies:

• Verlet integration predicts the position of a particle

• Gauss-Seidel loop iterates the particle till the final position is obtained

• Gauss-Seidel iteration operates based on projected constraints.

10

Body of the Model

1. Position of the particle

Predicted Position

Final Position

Motivation

Due to extreme dependency to Gauss-Seidel:

• Is it possible to improve the visual results within Gauss-Seidel on

the GPU?

11

PBD in Literature

12

Faure, F.,

“Interactive Solid Animation Using Linearized Displacement Constraints”

Computer Animation and Simulation Workshop, 1998

Stam J.,

"Nucleus: Towards a Unified Dynamics Solver for Computer Graphics"

Proceedings of Computer-Aided Design and Computer Graphics, 2009

Jakobsen, T.,

“Advanced Character Physics”

Proceedings of the Game Developers Conference, 2001

PBD in Literature

13

General (X)PBD Algorithm

xn+1 = xn + vnh + h2wifext

initialize total Lagrange multiplier λ0 = 0,

while k < Iterations do

 for all constraints do

 GAUSS-SEIDEL PROCESS

 end for

 k = k +1

end while

update xn+1

update velocity vn+1 = (xn+1 - xn) / h

14

Verlet Integration

xn+1 = xn + vnh + h2wifext

initialize total Lagrange multiplier λ0 = 0,

while k < Iterations do

 for all constraints do

 GAUSS-SEIDEL PROCESS

 end for

 k = k +1

end while

update xn+1

update velocity vn+1 = (xn+1 - xn) / h

15

Verlet Integration

xn+1 = xn + (xn – xn-1) + h2wifext

initialize total Lagrange multiplier λ0 = 0,

while k < Iterations do

 for all constraints do

 GAUSS-SEIDEL PROCESS

 end for

 k = k +1

end while

update xn+1

update velocity vn+1 = (xn+1 - xn) / h

16

Gauss-Seidel Process

After, the displacements of each point is calculated with a constraint function:

With the help of 1st order Taylor-expansion:

Position updates are obtained as:

17

where

Gauss-Seidel Process

In the recent extension to PBD (XPBD):

Position updates are associated with compliance stiffness matrix in order to

prevent iteration count and step-size dependency:

18

where

Gauss-Seidel Process

xn+1 = xn + (xn – xn-1) + h2wifext

initialize total Lagrange multiplier λ0 = 0,

while k < Iterations do

 for all constraints do

 compute Δλ and Δx

 λk+1 = λk + Δλ

 xk+1 = xk + Δx

 end for

 k = k +1

end while

update xn+1

19

Energy Aware Gauss-Seidel Algorithm

20

Body of the Model

Initial Position

Predicted Position

Final Position

Energy Aware Gauss-Seidel Algorithm

21

Initial Position

Predicted Position
Integration

Gauss-Seidel

Final Position

Body of the Model

Energy Aware Gauss-Seidel Algorithm

22

Body of the Model

Initial Position

Predicted Position

Final Position

Integration

Gauss-Seidel

Energy Aware Gauss-Seidel Algorithm

23

Predicted Position

Body of the Model

Final Position

Δx Δx Δx Δx

Gauss-Seidel

1.it. 2.it. 3.it. 4.it.

Energy Aware Gauss-Seidel Algorithm

24

Predicted Position

Body of the Model

Final Position

Δx Δx Δx Δx

Gauss-Seidel

1.it. 2.it. 3.it. 4.it.

Energy Aware Gauss-Seidel Algorithm

25

(xn)k

(xn)k+1

(xn)k+2

(xn)k+3

Energy Aware Gauss-Seidel Algorithm

26

(xn)k

(xn)k+1

(xn)k+2

(xn)k+3

Δx

Δx

Δx

Energy Aware Gauss-Seidel Algorithm

27

(xn)k

(xn)k+1

(xn)k+2

(xn)k+3

Δx

Δx

Δx

What about the implicit

velocities?

Energy Aware Gauss-Seidel Algorithm

28

(xn)k

(xn)k+1

(xn)k+2

(xn)k+3

Vk = (xn)k+1 - (xn)k

Energy Aware Gauss-Seidel Algorithm

29

(xn)k

(xn)k+1

(xn)k+2

(xn)k+3

Vk = (xn)k+1 - (xn)k

Vk+1 = (xn)k+2 - (xn)k

Energy Aware Gauss-Seidel Algorithm

30

(xn)k

(xn)k+1

(xn)k+2

(xn)k+3

Vk = (xn)k+1 - (xn)k

Vk+1 = (xn)k+2 - (xn)k

Vk+2 = (xn)k+3 - (xn)k

Energy Aware Gauss-Seidel Algorithm

Now, what do we know within the Gauss-Seidel Alg.:

• Positions

• Position changes

• Implicit velocities

• Constraint values (Potential energy values)

31

Energy Aware Gauss-Seidel Algorithm

Now, what do we know within the Gauss-Seidel Alg.:

• Positions

• Position changes

• Implicit velocities

• Constraint values (Potential energy values)

32

Is it posible to create an energy balance within

the Gauss-Seidel iteration?

Energy Aware Gauss-Seidel Algorithm

Su et al. (2012) applied the conservation principle to a mass-spring network

where:

• Velocities are based on forces.

• Hooke’s law dominates the framework.

• There is an integration dependency.

33

Energy Aware Gauss-Seidel Algorithm

However, inspired by their work, we alter the Gauss-Seidel Algorithm with the

energy balance in its each iteration:

That means each iteration satisfies:

34

ΔKE = - ΔPE

Energy Aware Gauss-Seidel Algorithm

However, inspired by their work, we alter the Gauss-Seidel Algorithm with the

energy balance in its each iteration:

That means each iteration satisfies:

35

ΔKE = - ΔPE

𝟏

𝟐
𝒎 𝑽𝒌+𝟏 𝑻

𝑽𝒌+𝟏 − 𝑽𝒌 𝑻
𝑽𝒌 = −[𝑪 𝒙𝒏 𝒌 − 𝑪 𝒙𝒏−𝟏]

Energy Aware Gauss-Seidel Algorithm

36

(xn)k

(xn)k+1

(xn)k+2

(xn)k+3

ΔKE = - ΔPE

ΔKE = - ΔPE

ΔKE = - ΔPE

Energy Aware Gauss-Seidel Algorithm

37

(xn)k

(xn)k+1

(xn)k+2

(xn)k+3

ΔKE + ΔPE = ϵ

ΔKE + ΔPE = ϵ

ΔKE + ΔPE = ϵ

Energy Aware Gauss-Seidel Algorithm

38

(xn)k

(xn)k+1

(xn)k+2

(xn)k+3

ΔKE + ΔPE = ϵ

ΔKE + ΔPE = ϵ

ΔKE + ΔPE = ϵ

𝑪 𝒙𝒌 = 𝑪 𝒙𝒌 + ∈

𝑪 𝒙𝒌 = 𝑪 𝒙𝒌 + ∈

𝑪 𝒙𝒌 = 𝑪 𝒙𝒌 + ∈

Energy Aware Gauss-Seidel Algorithm

39

Body of the Model

Initial Position

Predicted Position

Final Position

Integration

Gauss-Seidel

with Energy

Balance

ΔKE = - ΔPE

Mesh Coloring Alg.

Connectivity of the particles is a limitation for parallelism:

40

[Stam 2009]

Mesh Coloring Alg.

This limitation is the well-known race condition which is the attack of many

threads to one particle simultaneously:

41

Mesh Coloring Alg.

In order to avoid race condition, we have to partition the mesh structure:

42

Mesh Coloring Alg.

This partitioning has to be done in such a way that none of the elements share

any connectivity:

43

Mesh Coloring Alg.

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:

44

Mesh Coloring Alg.

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:

• It is a two step algorithm:

45

Mesh Coloring Alg.

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:

• It is a two step algorithm:

• First, a non-adjacent array list for each member is created:

46

Mesh Coloring Alg.

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:

• It is a two step algorithm:

• Second, colored groups are obtained from the non-adjacent array list:

47

Mesh Coloring Alg.

In order to achieve that, an intuitive Mesh Coloring Algorithm is implemented:

• It is a two step algorithm:

• Second, independent edges list is obtained from the non-adjacent array list:

48

Constraints

49

Constraints

50

Constraints

51

2D Meshes:

Hookean Spring:

STVK Spring:

Ani. Cont. Cloth:

Liu et al. 13

Junior et al. 18

Bender et al. 14

Constraints

52

3D Meshes:

Linear Elastic Material:

STVK Elastic Material:

Neo-Hookean Elastic Material:

Mooney-Rivlin Elastic Material:

Arruda-Boyce Elastic Material:

Bender et al. 14

Bender et al. 14

Sin et al. 13

Smith et al. 18

Sifakis & Barbic 12

Results

53

Model # of Edges # of Faces # of

Iteration

CPU (FPS) GPU (FPS)

Cloth 4880 3220 30 17-18 50-51

Bunny 12288 8192 15 2-3 37-38

Results

54

Results

55

Results

56

Results

57

Results

58

Results

59

Results

60

Results

61

Summary

62

• In this paper, we:
• extend the Gauss-Seidel iteration of (X)PBD algorithm with the

energy balances

Summary

63

• In this paper, we:
• extend the Gauss-Seidel iteration of (X)PBD algorithm with the

energy balances

• present our intuitive Mesh Coloring Alg. for parallel processing on

GPU

Summary

64

• In this paper, we:
• extend the Gauss-Seidel iteration of (X)PBD algorithm with the

energy balances

• present our intuitive Mesh Coloring Alg. for parallel processing on

GPU

• present the results by using many spring and constitutive

material potentials

Summary

65

• In this paper, we:
• extend the Gauss-Seidel iteration of (X)PBD algorithm with the

energy balances

• present our intuitive Mesh Coloring Alg. for parallel processing on

GPU

• present the results by using many spring and constitutive

material potentials

• show that our method is:

• straightforward, stable and easy to adapt to existing

frameworks.

THANK YOU!

66

