An Efficient Solution to Structured Optimization Problems using Recursive Matrices

Darius Rückert ${ }^{1}$ and Marc Stamminger ${ }^{1}$
${ }^{1}$ University of Erlangen-Nuremberg, Germany

Motivation

> 50 \% of the code is for
 - Sparse Block Matrices
 - Linear Solvers

Can we get rid of that?

https://github.com/ceres-solver/ceres-solver

Overview

Eigen Extension

https://eigen.tuxfamily.org

What is a Recursive Matrix?

Definition

A recursive matrix is a rectangular array of numbers or recursive matrices.

$$
\left.\left[\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right] \quad\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right]\left[\begin{array}{lllll}
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) & & & \left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right) & \\
\\
& & \left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) & & \\
0 & 0 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]\left[\begin{array}{llll}
\\
\left(\begin{array}{lll}
5 & 0 \\
0 & 5
\end{array}\right) & & & \\
& \ddots & & \\
& & & \\
& & & \\
& & & \left(\begin{array}{ll}
4 & 1 \\
2 & 3
\end{array}\right)
\end{array}\right]
$$

Recursive Matrix Operations

- Multiplication
- Addition
- Transposition

$\left[\begin{array}{ll}\left(\begin{array}{ll}1 & 2 \\ 5 & 6\end{array}\right) & \left(\begin{array}{ll}3 & 4 \\ 7 & 8\end{array}\right) \\ \left(\begin{array}{cc}9 & 10 \\ 13 & 14\end{array}\right) & \left(\begin{array}{ll}11 & 12 \\ 15 & 16\end{array}\right)\end{array}\right]^{T}=\left[\begin{array}{ll}\left(\begin{array}{ll}1 & 2 \\ 5 & 6\end{array}\right)^{T} & \left(\begin{array}{cc}9 & 10 \\ 13 & 14\end{array}\right)^{T} \\ \left(\begin{array}{ll}3 & 4 \\ 7 & 8\end{array}\right)^{T} & \left(\begin{array}{ll}11 & 12 \\ 15 & 16\end{array}\right)^{T}\end{array}\right]=\left[\begin{array}{ll}\left(\begin{array}{ll}1 & 5 \\ 2 & 6\end{array}\right) & \left(\begin{array}{ll}9 & 13 \\ 10 & 14\end{array}\right) \\ \left(\begin{array}{ll}3 & 7 \\ 4 & 8\end{array}\right) & \left(\begin{array}{ll}11 & 15 \\ 12 & 16\end{array}\right)\end{array}\right]$

Recursive Matrices in Eigen

- Scalar Matrix

$$
\left[\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

Matrix<float,3,3>

- Dense Block Matrix
Matrix<Matrix<float, 2,2>2,2>

$$
\left[\begin{array}{ll}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array}\right]
$$

- Sparse Block Matrix
SparseMatrix<Matrix<float,2,2>>
- Recursive Operations in Eigen
> Not working without our extension (see Paper)

Least-Squares Optimization

 $\underset{p, q, \ldots}{\arg \min } \sum_{\Downarrow} R(p, q, \ldots)^{2}$
Adjacency/Hessian Matrix

As Rigid as Possible (ARAP)

 $\underset{x}{\arg \min } \sum R\left(x_{i}, x_{j}\right)^{2}$

Recursive Matrix Type:

Sparsematrix< Matrix<float,3,3> > H;

Bundle Adjustment

$\underset{x, p}{\arg \min } \sum R\left(x_{i}, p_{j}\right)^{2}$

Po
3×6 Block

Recursive Matrix Type:
sparsematrix<
Matrix<float,-1,-1> > H;

Slow! D:

Mixed Matrix

Definition

A mixed matrix is a rectangular array, where each element can be of a different type.

$$
\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right]} & 42 \\
31+5 i & \text { "Hello" }
\end{array}\right] \begin{aligned}
& \text { MixedMatrix22< } \\
& \text { Matrix<float, 3, 3> } \\
& \text { float, } \\
& \text { complex<float> } \\
& \text { string } \\
& >A ;
\end{aligned}
$$

Recursive Bundle Adjustment

MixedMatrix22<
Diagonalmatrix<Matrix<f1oat,3,3>>, SparseMatrix<Matrix<float,3,6>>, Sparsematrix<Matrix<float,6,3>>, DiagonalMatrix<Matrix<float,6,6>> > H;

How do we solve

$$
H \Delta x=b \text { ? }
$$

Recursive Linear Solvers

"Normal" recursive matrices

- Recursive CG, Recursive LDLT,...
> Straight forward (see paper)
Mixed recursive matrices
- General solvers (CG)
- Partially specialized solvers

Partially Specialized Solvers

Diagonal
Arbitrary
Arbitrary
Arbitrary
Implementation

1. Invert Diagonal Matrix
2. Compute Schur Complement
3. Solve Reduced System (Recursive Call!)
4. Compute Solution for Initial System

Mixed 2x2 Matrix
$>$ Better than general solver

Template Matching

Results

Structured Optimization

ARAP - Speedup

Bundle Adjustment - Speedup

Results

Sparse Block Matrix Multiplication

Sparse Block Matrix-Vector

Sparse Block Matrix-Matrix

Speedup
2.5

Speedup

$>$ Clang 8.0-1 Thread on i7-7700K, SSE+AVX

Application

Camera Tracking (SLAM)

- Local/Global BA
- Pose Refinement
- Pose Graph Optimization

$>1.17 \mathrm{~ms} /$ frame ($\sim 850 \mathrm{FPS})^{*}$
*4 Threads on i7-8850H

Any Questions?

(? https://github.com/darglein/EigenRecursive
Δ darius.rueckert@fau.de

