High-Performance Graphics 2019

Strasbourg | July 8–10, 2019

Real-Time Ray Tracing on Head-Mounted-Displays for Advanced Visualization of Sheet Metal Stamping Defects

Andreas Dietrich, Jan Wurster, Eric Kam, Thomas Gierlinger ESI Group

July 9, 2019

www.esi-group.com

Sheet Metal Forming

Applications in Manufacturing

- Sheet metal forming summarizes a number of metal forming techniques in mass manufacturing:
 - Stamping
 - Punching
 - Blanking
 - Embossing
 - Bending
 - Coining
- Most common raw materials to form are sheet metal, other applications include materials such as polysterene

Sheet Metal Forming

Structural Defects

- Typical structural defects in sheet metal forming manufacturing
 - Cracking, splitting, ...
 - Springback
 - Wrinkles
 - Thinning / thickening
- Numerical solver solutions predict defects in stamped parts
 - Highly accurate simulation of the stamping process and die setup
 - Structural defects are clearly quantifiable
 - No physical prototype required

Sheet Metal Forming

Cosmetic Defects

- Aesthetics of remaining **cosmetic** defects hard to estimate from numerical analysis
- No general rule to automatically qualify based on numerics
 - Acceptance criteria vary from manufacturer to manufacturer and from model to model
 - Process builds on engineer's expertise and experience
- Interpretation of the visual impact of a defect is highly subjective
- Further steps such as assembly, coating, paint, affect the visual impact of a defect

Visualization of Cosmetic Stamping Defects Physical Prototypes

- Prototype parts verified using a manual review process
 - Stamped part removed from the die, trimmed, put up on a holder, and brought to a mirror-like finish
 - Use of special lighting and a combination of viewpoint and interaction with the part to evaluate visual defects
- Try-out at time where changes to die and process are costly
 - Goal: zero physical prototypes
 - Virtually produce and inspect perceived quality **before** try-out

Visualization of Cosmetic Stamping Defects Virtual Inspection

- Simulation of reflection lines
 - Reflection mapping (e.g. [Sussner et al. 2004])
 - Real-time ray tracing (e.g., [Wald et al. 2006])
 - So far limited to desktop applications
- New GPU Developments
 - RT Cores / Turing, DXR, Vulkan
 - Enable ray tracing applications in VR
 - Simulate accurate reflections at high resolutions and frame rates
 - Recreate whole physical workflows

Vision Matched Rendering

Skipping invisible pixels

- Hidden Area Mesh
 - Provided by OpenVR SDK
 - Defines visible area within image
 - Depends on HMD optics (e.g., lens distortion)
 - Roughly circular on Vive Pro
- Exploit in OptiX ray generation program
 - Avoid visibility computation and shading
 - Skip computing pixels outside disc
 - Disc diameter about 80% of box width

Aliasing

- Causes strong flickering
- More objectionable than stutter
- Particularly visible in reflections on curved surfaces

AA techniques implemented:

Basic oversampling

Render at higher resolution

Reduce overall flicker

get it right

More samples at image center➢ Reduce flicker of reflections

Filtering post-process ➤ Smooth edges

Copyright © ESI Group, 2019. All rights reserved.

Foveated Rendering

Experimental Variable Rate Sampling

Green: 1 sample / pixel Red: 4 samples / pixel

- Foveated oversampling
 - 50% radius of visible area disc
 - Dithering to avoid sharp transition
 - 4 samples / pixel
 - Still strong flicker
 - Frame rate reduced to ~10 fps
 - Need more than 16 for significant impact
 - Not practical

est it right®

Anti-Aliasing

Fast ApproXimate Anti-Aliasing (FXAA)

- FXAA [Lottes 2009]
 - Fullscreen post process (GLSL)
 - Edge-aware low-pass filter
- Basic algorithm
 - Detect edges based on contrast difference
 - Approximate luminance gradient
 - Filter along axis perpendicular to gradient

Edge detection

Main filtering direction

blue: vertical yellow: horizontal

Anti-Aliasing Fast ApproXimate Anti-Aliasing (FXAA)

Without FXAA

With FXAA

FXAA post-process

- Works well for edges
- Does not help for light reflections
- Smooths light fragments but does not merge them

System Setup

GPU

- NVIDIA Quadro RTX 8000
 - Turing architecture
 - 4608 CUDA cores
 - 576 Tensor cores
 - 72 RT cores
 - 48 GB device memory

HMD

- HTC Vive Pro
 - 1440 x 1600 pixels per eye
 - 90 Hz refresh rate
 - 110 degrees field of view

Performance Results

- Demo Scene
 - 2.2 Mio triangles
 - 1000 individual objects
 - 3 levels of reflection
 - 1 point light
 - Baked ambient occlusion
- Ray tracing backend provides
 - 2016 x 2240 pixels per eye
 - Super-sampled anti-aliasing
 - 100% resolution in SteamVR settings
 - Filtering done by HMD
 - 20 45 fps

get it righ

• HMD performs asynchronous reprojection to reduce judder

Experiences and Conclusion

- Full-frame Whitted-style ray tracing feasible on HMDs with a single GPU
 - Usable in VR inspection scenarios in virtual prototyping
- Raw frame rate not as important as you might think
 - Asynchronous reprojection works well for framerates above 20 fps
 - Significant change in stutter only perceived below 20 fps or over 90 fps
- Flicker resulting from aliasing most significant issue
 - Noise-type aliasing in reflections
 - Edge-filtering not sufficent
 - Vision matched oversampling still too costly

