DYNAMIC MANY-LIGHT SAMPLING FOR REAL-TIME RAY TRACING

Pierre Moreau ^{1,2}, Matt Pharr ¹ and Petrik Clarberg ¹ ¹ NVIDIA, ² Lund University

STILL FROM THE BISTRO EXTERIOR ANIMATION Only direct illumination

REFERENCE ANIMATION IN BISTRO EXTERIOR

PREVIOUS WORK: OVERVIEW

	APPROXIMATE METHODS	UNBIASED METHODS
Consistent	X	\checkmark
Area lights	X	\checkmark
Light leakage-free	Х	\checkmark
Cheap	\checkmark	X

Vévoda2016, ContyEstévez2018

Dynamic PDFs per cluster or shading point

Adapts to dynamic scenes

Log scaling with number of light sources, from light hierarchy

Vévoda2016, ContyEstévez2018

Dynamic PDFs per cluster or shading point

Adapts to dynamic scenes

Log scaling with number of light sources, from light hierarchy

Vévoda2016, ContyEstévez2018

Dynamic PDFs per cluster or shading point

Adapts to dynamic scenes

Log scaling with number of light sources, from light hierarchy

Vévoda2016, ContyEstévez2018

Dynamic PDFs per cluster or shading point

Adapts to dynamic scenes

Log scaling with number of light sources, from light hierarchy

Vévoda2016, ContyEstévez2018

Dynamic PDFs per cluster or shading point

Adapts to dynamic scenes

Log scaling with number of light sources, from light hierarchy

CONTRIBUTIONS

Organise light sources in multiple BVHs, arranged in a 2-level hierarchy

Top-level light BVH: cheap, good for large motions

Refitting light BVHs on GPU: efficient, good for small motion

TLAS: top-level acceleration structure BLAS: bottom-level acceleration structure

BLAS REFIT

- 1. Update all leaf nodes
- 2. Update all internal nodes at depth: tree_heigh - 1
- 3. Iteratively update remaining internal nodes, bottom to top

BLAS REFIT

- 1. Update all leaf nodes
- 2. Update all internal nodes at depth: tree_heigh - 1
- 3. Iteratively update remaining internal nodes, bottom to top

- Update all leaf nodes
- Update all internal nodes at depth:
- Iteratively update remaining internal nodes, bottom to top

BLAS REFIT

- 1. Update all leaf nodes
- 2. Update all internal nodes at depth: tree_heigh - 1
- 3. Iteratively update remaining internal nodes, bottom to top

RESULTS

Scenes information

	BISTRO EXTERIOR	EMERALD SQUARE
Static emissive triangles	20k	19k
Dynamic emissive triangles	6k	66k
Total triangles	3m	10m

N-LEVEL BVH COMPARISON

Sampling results after large amount of light movement

1-level BVH, 4 spp Refitted every frame

2-level BVH, 4 spp Every frame, TLAS rebuilt and BLASes refitted

Reference

N-LEVEL BVH COMPARISON

Sampling results after large amount of light movement

1-level BVH, 4 spp Refitted every frame

2-level BVH, 4 spp Every frame, TLAS rebuilt and BLASes refitted

Reference

QUALITY AND PERFORMANCE RESULTS

Bistro Exterior

Emerald Square

FILTERED RESULTS

Comparison with Uniform Sampling

SUMMARY

CONTRIBUTIONS

Light sources: multiple BVHs, 2level hierarchy

Refitting light BVHs: efficient, small motions

Top-level light BVH: cheap, large motions

FUTURE WORK

Detect: rebuild >>> refit

Use light visibility information

Reuse previous frame(s) light samples

TAKE-AWAY

Light BVH benefits from geometry BVH improvements

2-level light BVH: quality of 1level rebuild & speed of 1-level refit

Source code will be part of Falcor 4.0, to be released around October 2019 <u>https://github.com/NVIDIAGameWorks/Falcor</u>

N-LEVEL BVH COMPARISON OVER TIME

RESULTS Uniform vs 1-level (rebuilt) at equal time

DFBO: 6 spp, 41.8 ms

Reference

RESULTS IN BISTRO EXTERIOR

	UNIFORM	ONE-LEVEL (REBUILD)	ONE-LEVEL (REFIT)	TWO-LEVEL (REBUILD/REFIT)
BVH update time (ms)	0	~90	0.17	0.85/0.18
Sampling time (ms)	0.34	2.3	2.4	2.6
Total time (ms)	6.2	101	10.8	12.0
MSE	16.5	1.56	1.95	1.65
MC efficiency ε	0.0097	0.0064	0.048	0.050
E w.r.t. uniform	1x	0.66x	4.9x	5.2x

RESULTS IN EMERALD SQUARE

	UNIFORM	ONE-LEVEL (REBUILD)	ONE-LEVEL (REFIT)	TWO-LEVEL (REBUILD/REFIT)
BVH update time (ms)	0	~300	0.22	0.89/0.35
Sampling time (ms)	0.32	2.0	2.0	2.2
Total time (ms)	7.7	311	11.3	12.6
MSE	20	0.58	0.67	0.61
MC efficiency ε	0.0065	0.0055	0.132	0.130
E w.r.t. uniform	1x	0.85x	20.3x	20.1x

FILTERED RESULTS

In motion closeup

