RTX Beyond Ray Tracing

Exploring the Use of Hardware Ray Tracing Cores for Tet-Mesh Point Location

I Wald (NVIDIA), W Usher, N Morrical, L Lediaev, V Pascucci (University of Utah)

Motivation – What this is about

- In this paper: We accelerate Unstructured-Data (Tet Mesh) Volume Ray Casting...

Motivation – What this is about

- In this paper: We accelerate Unstructured-Data (Tet Mesh) Volume Ray Casting...
- But: This is *not* what this is (primarily) about
 - Volume rendering is just a "proof of concept".

- Original question: "What else" can you do with RTX?

- Remember the early 2000's (e.g., "register combiners"): Lots of innovation around "using graphics hardware for nongraphics problems".
- Since CUDA: Much of that has been subsumed through CUDA
- Today: Now that we have new hardware units (RTX, Tensor Cores), what else could we (ab-)use those for? ("(ab-)use" as in "use for something that it wasn't intended for")

Motivation – What this is about

- In this paper: We accelerate Unstructured-Data (Tet Mesh) Volume Ray Casting...
- But: This is *not* what this is (primarily) about
 - Volume rendering is just a "proof of concept".
- Original question: "What else" can you do with RTX?
 - Remember the early 2000's (e.g., "register combiners"):

Two main goal(s) of this paper:
 a) Get readers to think about the "what else"s...
 b) Show one first proof-of-concept
 (for this paper, tet-mesh volume rendering)

Background: Volume Rendering Unstructured Data in OSPRay

Background: Volume Rendering Unstructured Data in OSPRay

Two key components:

A) Renderer operates on abstract volume data type

- All any volume offers is a method to "sample(pos) → scalar"
- Renderer does ray marching; sample()'s the volume, integrates

Background: Volume Rendering Unstructured Data in OSPRay

Two key components:

A) Renderer operates on abstract volume data type

- All any volume offers is a method to "sample(pos) → scalar"
- Renderer does ray marching; sample()'s the volume, integrates

B) Specifically for tet mesh volumes:

- Have Bounding Volume Hierarchy (BVH) over tet prims
- Sample() traverses sample point down this BVH
 - Reject subtrees that do not contain sample pos
 - "Recursively" traverse those that do
 - Perform point-in-tet tests when reaching leaves
 - Back-track ...

Reference Method: "CUDA BVH"

Reference: Exactly that method... just in CUDA

- Build BVH over tets (on the host), then upload to GPU
- Use quad-BVH, with node quantization [Benthin et al'18]
 - No particular reason that code was just available
- Sample() method traverses BVH and performs point-tet tests
- Renderer ray marches, calls "sample()", calls XF, integrates, …

Reference Method: "CUDA BVH"

• Pro:

• Conceptually simple. Same as reference method, done.

• Con:

- Lots of code for BVH construction & traversal (actually pretty expensive code, too)
- Doesn't use RT Cores at all
 →No acceleration beyond CUDA
 →No benefit from RTX at all ⊗

→Question: Can we do more? Can use use RTX? How?

Method #1: "OptiX-BVH"

- Observation: sample() very similar to ray tracing
 - BVH, BVH traversal, prim intersection,

 \rightarrow "Make it fit" by viewing samples as zero-length "ray"s

- Traversing a ray will automatically traverse any point *on* that ray
 → For any sample "position", just "trace" a zero-length ray
 → Will do *more* than required (eg, order...), but will be correct!
- Direction of ray doesn't matter pick (1,1,1)
 - Implementation note: Have to use Epsilon-length, not zero

Method #1: "OptiX-BVH"

Once re-formulated as a ray problem: Use OptiX

- Create optix::Geometry(Instance) over tets
 - Primitive count = #tets
- Write bounding box program for tets (trivial)
- Write intersection program that performs "origin-in-tet" test
 - (just ignore the ray direction, it doesn't matter!)
- Trigger traversal by calling rtTrace() at each sample location
- Same raygen program as reference method, just different sample()

(b)

OptiX-BVH" method:

- Still using same CUDA point-in-prim test
- Replaced CUDA BVH trav with OptiX/RTX BVH trav.

Method #1: "OptiX-BVH"

• Pro:

- Much simpler: No longer need to deal with BVH build / traversal ... (let OptiX deal with that ...)
- Automatically use RT Cores when available

• Con:

- "Ray traversal" actually does more work than "point location"!
- RT Cores can *only* accelerate BVH traversal, not intersection ☺
 →Limits potential speedup (Amdahl's Law)

Problem: Can only accelerate traversal. (Illustration)

\rightarrow Q: How can we use even *more* of RTX HW?

- How can we et rid of CUDA intersection?
- How can we get rid of alternating HW-trav / SW isec?

Core observations

- a) Any ray *leaving* sample will have to hit one of enclosing tet's faces
- b) Faces are triangles (and RTX supports triangles!)

\rightarrow Trace rays against tet *faces*, use RTX Triangle HW

- Represent each tet through its four face triangles
- Tag each face with ID of its tet ID (index.w=tetID)
- Trace non-zero length ray (arbitrary direction), find closest face
 →Closest-hit program reads index.w ... there's your tet!

Core observations

- a) Any ray *leaving* sample will have to hit one of enclosing tet's faces
- b) Faces are triangles (and RTX supports triangles!)

\rightarrow Trace rays against tet *faces*, use RTX Triangle HW

- Represent each tet through its four face triangles
- Tag each face with ID of its tet ID (index.w=tetID)
- Trace non-zero length ray (arbitrary direction), find closest face
 →Closest-hit program reads index.w ... there's your tet!

Core observations

- a) Any ray *leaving* sample will have to hit one of enclosing tet's faces
- b) Faces are triangles (and RTX supports triangles!)

 \rightarrow Trace rays against tet *faces*, use RTX Triangle HW

- In theory, now much more work than point location
 - 4x num prims
 - BVH over triangles, not boxes
 - Non-infinitesimal rays: Actual traversal
 - Ray-triangle tests
- But: With hardware support
 - All of traversal & isec, SM only gets final hitpoint

- Caveat #1: Have to find the right faces
 - Adjacent triangles each produce same face
 - Have to make sure we report the "right" one!
 - Solution: Inward-facing triangles + "Back-face" Culling
 - Supported by RTX → "free"

- (Unexpected) Caveat #2: Query points outside any tet
 - May report "false positive"
 - →Require additional (software-)point-in-tet test on "final" closest hit
 - Only one such test per sample ... but still expensive \circledast

Method #3: "RTX (shared) Faces"

- Q: Can we avoid this final software test?
- Idea: Store shared faces
 - Shared faces only stored once
 - Tagged with ID of both tet on front, and that on back (-1 = none)
 - In closest hit program: → <u>rtlsTriangleHitBackFace()</u> (cheap)

Method #3: "RTX (shared) Faces"

- Q: Can we avoid this final software test?
- Idea: Store shared faces
- Con:
 - Required precompute pass (host, tricky ☺)
- Pro:
 - 2x fewer triangles, cheaper BVH
 - Automatically fixes "outside any tet" case (tetID="-1") → faster

Evaluation

Evaluation: HW/SW Setup

- Host: Regular PC

- Intel Core i7-5930k CPU, 32 GB Ram

Software Stack

- Linux (Ubuntu 18)
- Nvidia Driver 418.35 (regular, public driver)
- OptiX version: initially 5.5, then 6.0 after release
- Three GPUs: Both pre- and post-RTX
 - V100 (Volta) : Pre-RTX, high-end, for reference
 - 5120 cores @ 1.2Ghz , 12 GB HBM2 Memory, no dedicated RT Cores
 - RTX 2080 FE: Turing w/ RTX support
 - 2944 cores @ 1.8GHz, 46 RT Cores, 8 GB DDR6 RAM
 - Titan RTX: Turing w/ RTX
 - 4608 cores @ 1.35 GHz, 72 RT Cores, 24 GB DDR6 RAM

Evaluation: Data Sets

- Four different tet data sets, varying complexity
 - Only tets for now
 - (generalization "in the works")
 - Only focused on "realistically large" data sets
 - Some data sets also contain triangles ("bathymetry", outlines, ...)
 - Some require interpolation (per vertex data) others not (per cell)

Fusion 3 M tets, 622 K verts scalar per-vertex

Jets 12 M tets, 2.1 M verts scalar per-vertex

Agulhas Current 35.7 M tets, 6.2 M verts scalar per-cell, plus 20.1 M tris

Japan Earthquake 62.2 M tets, 15 M verts scalar per-vertex, plus 257 K tris

Memory ...

		Volta, n	o RTX		Turing, with RTX			
model	fusion	jets	agulh	jpn-qk	fusion	jets	agulh	jpn-qk
#tets	3M	12M	36M	62M	3M	12M	36M	62M
	cuda-bvh (Section 3)							
final	725M	921M	2.0G	3.2G	466M	844M	1.9G	3.1G
		rt	x-bvh	(Section	n 4)			
peak (no p/s)	837M	2.4G	6.3G	10.6G	656M	2.1G	5.7G	9.6G
peak (w/ p/s)	725M	1.6G	3.9G	6.5G	504M	1.1G	2.1G	4.4G
final	717M	1.6G	3.8G	6.1G	464M	754M	1.7G	3.1G
		rtx-re	ep-fac	ces (Sec	ction 5.1)		
#faces	11.9M	49.1M	143M	249M	11.9M	49.1M	143M	249M
peak (no p/s)	2.5G	9.0G	(00m)	(00m)	1.6G	5.9G	16.9G	(00m)
peak (w/ p/s)	2.1G	7.3G	(00m)	(00m)	1.2G	2.3G	6.1G	11.0G
final	2.1G	7.2G	(00m)	(00m)	770M	1.8G	5.4G	10.7G
	l	rtx-sh	rd-fa	ces(Se	ction 5.2	2)		
#faces	5.99M	24.7M	72M	134M	5.99M	24.7M	72M	134M
peak (no p/s)	1.5G	4.9G	(00m)	(00m)	960M	3.3G	9.3G	16.9G
peak (w/ p/s)	1.3G	4.1G	11.3G	(00m)	846M	1.7G	4.4G	7.2G
final	1.3G	4.0G	11.3G	(00m)	643M	1.4G	3.9G	6.8G

Memory: RTX vs pre-RTX

Memory: Pre-Splitting vs Naive

Memory: Per Method ...

Performance

- Let's run some more experiments ...

- a) "Synthetic" cost-per-sample
- b) "Integrated" volume render performance

Fusion 3 M tets, 622 K verts scalar per-vertex

Jets 12 M tets, 2.1 M verts scalar per-vertex

Agulhas Current 35.7 M tets, 6.2 M verts scalar per-cell, plus 20.1 M tris

Japan Earthquake 62.2 M tets, 15 M verts scalar per-vertex, plus 257 K tris

	Synthetic Uniform (samples/sec)			Synthetic Random (samples/sec)				
	fusion	jets	agulh	jpn-qk	fusion	jets	agulh	jpn-qk
#tets	(3M)	(12M)	(36M)	(62M)	(3M)	(12M)	(36M)	(62M)
% of bbox occupied:	54.15%	100%	49.3%	7.15%	54.15%	100%	49.3%	7.15%
				Tit	an V (Volta	, no RTX)		
cuda-bvh	89.7M	1.55G	971M	461M	36.4M	82.4M	83.8M	70.3M
rtx-bvh	91.8M	1.05G	741M	373M	30.2M	108M	83.6M	68.6M
rtx-rep-faces	34.7M	407M	(00m)	(00m)	23.7M	81.5M	(00m)	(00m)
rtx-shrd-faces	59.7M	689M	397M	(00m)	35.1M	101M	63.6M	(oom)
	RTX 2080 (Turing, with RTX)							
cuda-bvh	53M	996M	563M	263M	19.7M	60.5M	53.3M	44.1M
rtx-bvh	98.2M	1.17G	1.03G	525M	24.7M	74.7M	69M	59.6M
rtx-rep-faces	253M	1.23G	1.11G	(00m)	65.2M	159M	126M	(00m)
rtx-shrd-faces	354M	1.62G	1.58G	1.28G	76.1M	175M	130M	100M
				Titan	RTX (Turin	g, with RT	YX)	
cuda-bvh	82.5M	1.39G	799M	384M	30.4M	88.7M	76.5M	62.8M
rtx-bvh	145M	1.67G	1.43G	736M	37.1M	111M	99.5M	83.9M
rtx-rep-faces	377M	1.78G	1.67G	1.36G	97M	234M	182M	133M
rtx-shrd-faces	537M	2.39G	2.31G	1.89G	112M	258M	189M	145M

	Synthe	thetic Uniform (samples/sec)			Synthetic Random (samples/sec)			
	fusion	jets	agulh	jpn-qk	fusion	jets	agulh	jpn-qk
%of bb	Note: "	Rando	om" is	design	ed to b	e bad.		(22M) 5%
	guaran	<i>teed</i> to	o diver	ge, for	everys	sample	2)	
rtx-by Across	all expe	erimen	its, see	e perf o	drop by	1/2 to f	, ull OO	M ^{3M} 6M
rtx-rep-faces	34.7M	407M	(00M)	(00M)	23.7M	<u>81.5M</u>	~7x	(00m)
rtx-shrd-faces	59.7M	689M	207M	()	25.1M	101M		(00M)
				RTX 2	2080 (Turing	g, with RT	X)	
cuda-bvh	53M	996M	563M	263M	19.7M	60.5M	53.3M	44.1M
rtx-bvh	98.2M	1.17G	1.03G	525M	24.7M	74.7M	69M	59.6M
rtx-rep-faces	253M	1.23G	1.11G	(oom)	65.2M	159M	126M	11v
rtx-shrd-faces	354M	1.62G	1.58G	1,200	76.1M	1751	130M	
	Titan RTY (Turing with RTX)							
cuda-bvh	82.5M	1.000	72001	20414	30.4M	~2.5x	76.5M	62.8M
rtx-bvh	145M	1.67G	1.43G	736M	37.1M	111M	99.5M	83.9M
rtx-rep-faces	377M	1.78G	1.67G	1.36G	97M	234M	182M	133M
rtx-shrd-faces	537M	2.39G	2.31G	1.89G	112M	258M	189M	145M

	Synthetic Uniform (samples/sec)			Synthetic Random (samples/sec)				
	fusion	jets	agulh	jpn-qk	fusion	jets	agulh	jpn-qk
#tets	(3M)	(12M)	(36M)	(62M)	(3M)	(12M)	(36M)	(62M)
%of bbox occupied:	54.15%	100%	49.3%	7.15%	54.15%	100%	49.3%	7.15%
				Tit	an V (Volta	, no RTX)		
cuda-bvh	89.7M	1.55G	971M	461M	36.4M	82.4M	83.8M	70.3M
rtx-bvh	91.8M	1.05G	741M	373M	30.2M	108M	83.6M	68.6M
rtx-rep-faces	34.7M	407M	(00m)	(00m)	23.7M	81.5M	(00m)	(00m)
rtx-shrd-faces	59.7M	689M	397M	(00m)	35.1M	101 M	63.6M	(00M)

More interesting: How do *methods* compare? Start with pre-RTX....

	Synthetic Uniform (samples/sec)			Synthetic Random (samples/sec)				
	fusion	jets	agulh	jpn-qk	fusion	jets	agulh	jpn-qk
#tets	(3M)	(12M)	(36M)	(62M)	(3M)	(12M)	(36M)	(62M)
%of bbox occupied:	54.15%	100%	49.3%	7.15%	54.15%	100%	49.3%	7.15%
	Titar V (Volta, no PTV)							
cuda-bvh	89.7M	1.55G	971M	461M	36.4M	82.4M	83.8M	70.3M
rtx-bvh	91.8M	1.05G	741M	373M	30.2M	108M	83.6M	68.6M
rtx-rep-faces	34.7M	407M	(00m)	(00m)	23.7M	81.5M	(oom)	(00m)
rtx-shrd-faces	59.7M	689M	397M	(00m)	35.1M	101M	63.6M	(00M)

Pre RTX Hardware:

Perf at best stays about same (random samples)...

	Synthe	Synthetic Uniform (samples/sec)			Synthetic Random (samples/sec)			
	fusion	jets	agulh	jpn-qk	fusion	jets	agulh	jpn-qk
#tets	(3M)	(12M)	(36M)	(62M)	(3M)	(12M)	(36M)	(62M)
%of bbox occupied:	54.15%	100%	49.3%	7.15%	54.15%	100%	49.3%	7.15%
				Tit	t an V (Volta	, no RTX)		
cuda-bvh	89.7M	1.55G	971M	461M	36.4M	82.4M	83.8M	70.3M
rtx-bvh	91.8M	1.05G	741M	373M	30.2M	108M	83.6M	68.6M
rtx-rep-faces	34.7M	407M	(00m)	(00m)	23.7M	81.5M	(00m)	(00m)
rtx-shrd-faces	59.7M	689M	397M	(oom)	35.1M	101M	63.6M	(00m)
		P	Pre RT	X Harc	dware:			
Pe	rf at bes	st stays	s abol	ut same	e (rando	om sar	nples)	
	and for	unifor	m sar	nples:	more th	nan 2x	worse	<u>e</u> l
-	(ves if both are in software "ray trace" and							
"triangles" are more expensive than "point								
and "point point								
	query" and "points"!)							

	Synthe	tic Unifor	m (sample	es/sec)	Synthe	Synthetic Random (sample		
	fusion	jets	agulh	jpn-qk	fusion	jets	agulh	jpn-qk
#tets	(3M)	(12M)	(36M)	(62M)	(3M)	(12M)	(36M)	(62M)
% of bbox occupied:	54.15%	100%	49.3%	7.15%	54.15%	100%	49.3%	7.15%
				Tit	an V (Volta	, no RTX)		
cuda-bvh	<i>Nith</i> Hai	dware		eration	n (2080	or Tita	an RT)	$\langle \rangle$ -
rtx-bvh		avvarc		Cration	1 (2000			` /·
rtx-rep-fac Pe	f gets c	ontinu	ially be	e <i>tter</i> th	e more	RTCo	re we	use.
rtx-shrd-fa		- From ~1.5x						
		_				.,	,	
cuda-bvh	53M	996M	563M	263M	19.7M	60.5M	53.3M	44.1M
rtx-bvh	98.2M	1.17G	1.03G	525M	24.7M	74.7M	69M	59.6M
rtx-rep-faces	253M	1.23G	1.11G	(oom)	65.2M	159M	126M	(oom)
rtx-shrd-faces	354M	1.62G	1.58G	1.28G	76.1M	175M	130M	100M
				Titan	RTX (Turin	g, with RT	X)	
cuda-bvh	82.5M	1.39G	799M	384M	30.4M	88.7M	76.5M	62.8M
rtx-bvh	145M	1.67G	1.43G	736M	37.1M	111M	99.5M	83.9M
rtx-rep-faces	377M	1.78G	1.67G	1.36G	97M	234M	182M	133M
rtx-shrd-faces	537M	2.39G	2.31G	1.89G	112M	258M	189M	145M

	Synthe	tic Uniform (samples/sec)			Synthetic Random (samples/sec)			
	fusion	jets	agulh	jpn-qk	fusion	jets	agulh	jpn-qk
#tets	(3M)	(12M)	(36M)	(62M)	(3M)	(12M)	(36M)	(62M)
%of bbox occupied:	54.15%	100%	49.3%	7.15%	54.15%	100%	49.3%	7.15%
				Tit	an V (Volta	, no RTX)		
cuda-bvh	/ith Ha	rdward		oration	n (2080	or Tita	an RT)	$\langle \rangle$.
rtx-bvh		i divarc		cration .	1 (2000			` /·
rtx-rep-fac Per	f gets c	continu	ially be	e <i>tter</i> th	e more	RTCo	re we	use.
rtx-shrd-fa		to up to almost 7x						
cuda-bvh	53M	996M	563M	263M	19.7M	60.5M	53.3M	44.1M
rtx-bvh	98.2M	1.17G	1.03G	525M	24.7M	74.7M	69M	59.6M
rtx-rep-faces	253M	1.23G	1.11G	(00m)	65.2M	159M	126M	(oom)
rtx-shrd-faces	354M	1.62G	1.58G	1.28G	76.1M	175M	130M	100M
				Titan	RTX (Turin	g, with RT	'X)	
cuda-bvh	82.5M	1.39G	799M	384M	30.4M	88.7M	76.5M	62.8M
rtx-bvh	145M	1.67G	1.43G	736M	37.1M	111M	99.5M	83.9M
rtx-rep-faces	377M	1.78G	1.67G	1.36G	97M	234M	182M	133M
rtx-shrd-faces	537M	2.39G	2.31G	1.89G	112M	258M	189M	145M

	Synthetic Uniform (samples/sec)			Synthetic Random (samples/sec)				
	fusion	jets	agulh	jpn-qk	fusion	jets	agulh	jpn-qk
#tets	(3M)	(12M)	(36M)	(62M)	(3M)	(12M)	(36M)	(62M)
% of bbox occupied:	54.15%	100%	49.3%	7.15%	54.15%	100%	49.3%	7.15%
				Tit	an V (Volta	, no RTX)		
cuda-bvh	<i>Vith</i> Hai	rdware		eration	n (2080	or Tite	an RT)	<).
rtx-bvh					1 (2000			` /·
rtx-rep-fac Pe	f gets c	continu	ally be	e <i>tter</i> th	e more	RTCo	re we	use.
rtx-shrd-fa		and $\sim 3x$ on avg						
cuda-bvh	53M	996M	563M	263M	19.7M	60.5M	53.3M	44.1M
rtx-bvh	98.2M	1.17G	1.03G	525M	24.7M	74.7M	69M	59.6M
rtx-rep-faces	253M	1.23G	1.11G	(00m)	65.2M	159M	126M	(oom)
rtx-shrd-faces	354M	1.62G	1.58G	1.28G	76.1M	175M	130M	100M
	IIIan RIA (IUring, WIUI KIA)							
cuda-bvh	82.5M	1.39G	799M	384M	30.4M	88.7M	76.5M	62.8M
rtx-bvh	145M	1.67G	1.43G	736M	37.1M	111 M	99.5M	83.9M
rtx-rep-faces	377M	1.78G	1.67G	1.36G	97M	234M	182M	133M
rtx-shrd-faces	537M	2.39G	2.31G	1.89G	112M	258M	189M	145M

Japan Earthquake

62.2 M tets, 15 M verts

scalar per-vertex, plus 257 K tris

- Integrated Variants into Actual Volume Ray Marcher
 - Important: Sample-based! (not tet marching, projected tets, etc)
 - le, one ray *per sample NOT* per *pixel*
 - Also trace "some" (geometry) rays for bathymetry (with AO)

Fusion 3 M tets, 622 K verts scalar per-vertex

Jets 12 M tets, 2.1 M verts scalar per-vertex

Agulhas Current 35.7 M tets, 6.2 M verts scalar per-cell, plus 20.1 M tris

	Volume	Renderin	σ (FPS 10	(24^2 niv)					
Roughly same results as for synthetic:									
11000	(3111)	(12111)	(3011)	(02111)					
Tita	n V (Volta	, no RTX)							
cuda-bvh	13.98	27.64	24.62	5.15					
rtx-bvh	5.74	13.7	17.3	3.07					
rtx-rep-faces	5.82	8.79	(00M)	(00m)					
rtx-shrd-faces	9.4	13.2	(00M)	(00m)					
RTX 2080 (Turing, with RTX)									
cuda-bvh	8.85	17.2	19.6	3.18					
rtx-bvh	6.45	9.78	13.1	3					
rtx-rep-faces	21.6	22.5	27.9	(00m)					
rtx-shrd-faces	33.7	27.5	35.4	5.53					
Titan I	RTX (Turin	ig, with RT	TX)						
cuda-bvh	12.2	22	24	4.44					
rtx-bvh	7.44	11	16.2	3.57					
rtx-rep-faces	27.7	27.1	31.9	7.89					
rtx-shrd-faces	41	32.1	40.1	7.22					

	Volume Rendering (FPS 1024 ² piv)									
Roughly same results as for synthetic:										
	- Pert dro	ps for	pre-RT	XHW						
	cuda-bvh	13.98	27.64	24.62	5.15					
	rtx-bvh	5.74	13.7	17.3	3.07					
	rtx-rep-faces	5.82	8.79	(00M)	(00m)					
	rtx-shrd-faces	9.4	13.2	(00M)	(00M)					
RTX 2080 (Turing, with RTX)										
	cuda-bvh	8.85	17.2	19.6	3.18					
	rtx-bvh	6.45	9.78	13.1	3					
	rtx-rep-faces	21.6	22.5	27.9	(00m)					
	rtx-shrd-faces	33.7	27.5	35.4	5.53					
	Titan R	TX (Turin	ng, with R7	TX)						
	cuda-bvh	12.2	22	24	4.44					
	rtx-bvh	7.44	11	16.2	3.57					
	rtx-rep-faces	27.7	27.1	31.9	7.89					
	rtx-shrd-faces	41	32.1	40.1	7.22					

Volume Rendering (FPS 1024² niv)

Roughly same results as for synthetic: - Perf *drops* for pre-RTX HW ...

- ... but it does pay off w/ HW Accel (by ~1.5-3x)

rtx-bvh	5.74	13.7	17.3	3.07
rtx-rep-faces	5.82	8.79	(00M)	(00m)
rtx-shrd-faces	9.4	13.2	(00M)	(00m)
RTX 2	080 (Turin	ig, with RT2	X)	
cuda-bvh	8.85	17.2	19.6	3.18
rtx-bvh	6.45	9.78	13.1	3
rtx-rep-faces	21.6	22.5	27.9	(00m)
rtx-shrd-faces	33.7	27.5	35.4	5.53
Titan F	{TX (Turi	rg, with RT	X)	
cuda-bvh	12.2	22	24	4.44
rtx-bvh	7.44	11	16.2	3.57
rtx-rep-faces	27.7	27.1	31.9	7.89
rtx-shrd-faces	41	32.1	40.1	7.22

	Volume Rendering (FPS, 1024 ² pix)							
	fusion	jets	agulh	jpn-qk				
#tets	(3M)	(12M)	(36M)	(62M)				
Titan V (Volta, no RTX)								
cuda-bvh	13.98	27.64	24.62	5.15				
rtx-bvh	5.74	13.7	17.3	3.07				
nty non faces	5.82	8 70	(000)	(000)				

Eventually: Speedup for *every* dataset.

Bottom line: Re-formulating point location as a ray tracing problem does *more* work ... but still makes it faster because of hardware acceleration!

		<u> </u>	· ·	
cuda-bvh	12.2	22	24	4.44
rtx-bvh	7.44	11	16.2	3.57
rtx-rep-faces	27.7	27.1	31.9	7.89
rtx-shrd-faces	41	32.1	40.1	7.22

Summary

In this paper

- Encouraged to look at RT Cores "beyond ray tracing"
- Our example: Tet-mesh point location / volume sampling

Proposed four different methods

- With increasing degrees of using RTX
- General scheme: do *more* work but get it done faster through HW

→Successful proof-of-concept

Early work, but already ~2x speedup in actual unstructured-data volume renderer

Future Work

Lots of opportunities for rendering / visualization

- Biggest-ticket item: Space skipping / adaptive sampling (already working on that)
- More general: Now that RT is *that* fast, what else can we use it for?

Future Work

Lots of opportunities for rendering / visualization

- Biggest-ticket item: Space skipping / adaptive sampling (already working on that)
- More general: Now that RT is *that* fast, what else can we use it for?
- Interesting questions for non-gfx CS practitioners
 - What else could we use RT Cores for? Beyond rendering!?

Future Work

Lots of opportunities for rendering / visualization

- Biggest-ticket item: Space skipping / adaptive sampling (already working on that)
- More general: Now that RT is *that* fast, what else can we use it for?
- Interesting questions for non-gfx CS practitioners
 - What else could we use RT Cores for? Beyond rendering!?
- Interesting questions for HW designers
 - What if we could trace things other than rays?
 - What if we had prims other than triangles?
 - What kind of workloads could we accelerate then?

Reference Method: "CUDA BVH"

Reference: Exactly that method... just in CUDA

- Build BVH over tets (on the host), then upload to GPU
- Use quad-BVH, with node quantization [Benthin et al'18]
 - No particular reason that code was just available
- Sample() method traverses BVH and performs point-tet tests
- Renderer ray marches, calls "sample()", calls XF, integrates, ...

Implementation Notes

- Reasonably complete volume ray tracer, but not "crazy" advanced
- "Plain" CUDA implementation, but within OptiX
 - Ie, use OptiX frame buffer, multi-GPU, "raygen" program etc
 → Allowed for sharing code infrastructure w/ other kernels
 - But: Plain CUDA code in raygen program, no rtTrace() etc.

Memory: Per Method ...

	Volta, no RTX			Turing, with RTX				
model	fusion	jets	agulh	jpn-qk	fusion	jets	agulh	jpn-qk
#tets	3M	12M	36M	62M	3M	12M	36M	62M
cuda-bvh (Section 3)								
final	725M	921M	2.0G	3.2G	466M	844M	1.9G	3.1G
rtx-bvh (Section 4)								
peak (no p/s)	837M	2.4G	6.3G	10.6G	656M	2.1G	5.7G	9. jG
peak (w/ p/s)	725M	1.6G	3.9G	6.5G	504M	1.1G	2.1G	4 IG
final	717M	1.6G	3.8G	6.1G	464M	754M	1.7G	3.1G
rtx-rep-faces (Section 5.1)								
#faces	11.9M	49.1M	143M	249M	11.9M	49.1M	143M	24 M
peak (no p/s)	2.5G	9.0G	(00m)	(oom)	1.6G	5.9G	16.9G	(oom)
peak (w/ p/s)	2.1G	7.3G	(00m)	(oom)	1.2G	2.3G	6.1G	11)G
final	2.1G	7.2G	(00m)	(00m)	770M	1.8G	5.4G	10.7G
But shared-faces method				tion 5.2)				
$\frac{\#fa}{pe}$ much better than replicated $\frac{5.9}{96}$ -~40%						M 9G		
peak (w/ p/s)	1.3G	4.1G	11.3G	(oom)	846M	1.7G	4.4G	7 PG
final	1.3G	4.0G	11.3G	(oom)	643M	1.4G	3.9G	6.8G

Implementation Notes

Ray Length

- For face-methods: Can no longer use 0-length rays
 - Infinite-length is correct, but expensive
- Solution: Precompute maximum edge length
 - Guaranteed long enough to reach faces \rightarrow correct
 - Much faster (avoids traversing far-away regions)

Disabling Any-Hit

AnyHit Programs in OptiX

- Called on *any* valid intersection during a traversal (ie, *not* just the final, closest one)
- Eg, useful for accumulating opacity for shadow rays

• But: Can lead to overhead when *not* using them

- "Not specifying AH Program" != "not having one"
 - By default, OptiX assigns "empty" AnyHit program
- Even an "empty" program must run on the SM
 →Switch from HW traversal to "empty" CUDA prog for every isec!
 →Significant call overhead, even when doing "nothing"
- Tip: If you don't need them, disable them!
 - E.g., rtTrace(...RT_RAY_FLAG_DISABLE_ANYHIT...);
 - In our implementation, at times seen ~10% final frame difference

Pre-Splitting

Problem(s): BVH Peak Mem limits max model size

- a) BVH builder needs (non-trivial) temp memory during build
 → "peak" mem (during build) much higher than "final" mem (render)
- b) No "graceful degradation" if peak mem > available GPU mem
 - → Peak Mem > Available GPU Mem: "Allocation Error" …
- → Several tested data sets initially didn't work.... ... even if final memory was << GPU memory

Pre-Splitting

- Problem(s): BVH Peak Mem limits max model size
- Suggestion: "Pre-split"
 - Don't create one big optix::GeometryGroup over all prims/tris
 - Instead: on host, pre-split prims into multiple (T)GGs
 - E.g., "chunks" of max 1M prims/tris
 - Using simple spatial median parititoning seems fine
 - then create second-level group over those (T)GGs
 - Ideally, "force" a build with a rtLaunch(0,0,0) for each (T)GG
- → Significantly limits peak mem usage
 - ... to peak mem of any *chunk*
- (Apparently) negligible performance impact
 - Does force a two-level BVH, but since RTX supports that