
RTX Beyond Ray Tracing

Exploring the Use of Hardware Ray Tracing 

Cores for Tet-Mesh Point Location

I Wald (NVIDIA), 

W Usher, N Morrical, L Lediaev, V Pascucci (University of Utah)

-Now, let’s run a lot of experiments …



NVIDIA Confidential

Motivation – What this is about

- In this paper: We accelerate Unstructured-Data (Tet 

Mesh) Volume Ray Casting…



NVIDIA Confidential

Motivation – What this is about

- In this paper: We accelerate Unstructured-Data (Tet 

Mesh) Volume Ray Casting…

- But: This is not what this is (primarily) about

- Volume rendering is just a “proof of concept”.

- Original question: “What else” can you do with RTX?

- Remember the early 2000’s (e.g., “register combiners”): 

Lots of innovation around “using graphics hardware for non-

graphics problems”.

- Since CUDA: Much of that has been subsumed through CUDA

- Today: Now that we have new hardware units (RTX, Tensor 

Cores), what else could we (ab-)use those for?

(“(ab-)use” as in “use for something that it wasn’t intended for”)



NVIDIA Confidential

Motivation – What this is about

- In this paper: We accelerate Unstructured-Data (Tet 

Mesh) Volume Ray Casting…

- But: This is not what this is (primarily) about

- Volume rendering is just a “proof of concept”.

- Original question: “What else” can you do with RTX?

- Remember the early 2000’s (e.g., “register combiners”): 

Lots of innovation around “using graphics hardware for non-

graphics problems”.

- Since CUDA: Much of that has been subsumed through CUDA

- Today: Now that we have new hardware units (RTX, Tensor 

Cores), what else could we (ab-)use those for?

(“(ab-)use” as in “use for something that it wasn’t intended for”)

→ Two main goal(s) of this paper:

a) Get readers to think about the “what else”s…

b) Show one first proof-of-concept

(for this paper, tet-mesh volume rendering)



NVIDIA Confidential

Background: Volume Rendering 

Unstructured Data in OSPRay



NVIDIA Confidential

Background: Volume Rendering 

Unstructured Data in OSPRay

Two key components:

A) Renderer operates on abstract volume data type

• All any volume offers is a method to “sample(pos) → scalar”

• Renderer does ray marching; sample()’s the volume, integrates



NVIDIA Confidential

Background: Volume Rendering 

Unstructured Data in OSPRay

Two key components:

A) Renderer operates on abstract volume data type

• All any volume offers is a method to “sample(pos) → scalar”

• Renderer does ray marching; sample()’s the volume, integrates

B) Specifically for tet mesh volumes: 

• Have Bounding Volume Hierarchy (BVH) over tet prims

• Sample() traverses sample point down this BVH

• Reject subtrees that do not contain sample pos

• “Recursively” traverse those that do

• Perform point-in-tet tests when reaching leaves

• Back-track …



NVIDIA Confidential

• Reference: Exactly that method… just in CUDA

• Build BVH over tets (on the host), then upload to GPU

• Use quad-BVH, with node quantization [Benthin et al’18]

• No particular reason – that code was just available

• Sample() method traverses BVH and performs point-tet tests

• Renderer ray marches, calls “sample()”, calls XF, integrates, …

Reference Method: “CUDA BVH”



NVIDIA Confidential

• Pro: 

• Conceptually simple. Same as reference method, done.

• Con: 

• Lots of code for BVH construction & traversal

(actually pretty expensive code, too)

• Doesn’t use RT Cores at all 

→No acceleration beyond CUDA

→No benefit from RTX at all 

→Question: Can we do more? Can use use RTX? How?

Reference Method: “CUDA BVH”



NVIDIA Confidential

• Observation: sample() very similar to ray tracing ….

• BVH, BVH traversal, prim intersection, ….

→“Make it fit” by viewing samples as zero-length “ray”s

• Traversing a ray will automatically traverse any point on that ray

→ For any sample “position”, just “trace” a zero-length ray

→ Will do more than required (eg, order…), but will be correct!

• Direction of ray doesn’t matter – pick (1,1,1)

• Implementation note: Have to use Epsilon-length, not zero …

Method #1: “OptiX-BVH”



NVIDIA Confidential

• Once re-formulated as a ray problem: Use OptiX

• Create optix::Geometry(Instance) over tets

• Primitive count = #tets

• Write bounding box program for tets (trivial)

• Write intersection program that performs “origin-in-tet” test

• (just ignore the ray direction, it doesn’t matter!)

• Trigger traversal by calling rtTrace() at each sample location

• Same raygen program as reference method, just different sample()

Method #1: “OptiX-BVH”

“OptiX-BVH” method:

- Still using same CUDA 

point-in-prim test

- Replaced CUDA BVH trav

with OptiX/RTX BVH trav.



NVIDIA Confidential

• Pro: 

• Much simpler: No longer need to deal with BVH build / traversal …

(let OptiX deal with that …)

• Automatically use RT Cores when available

• Con:

• “Ray traversal” actually does more work than “point location”!

• RT Cores can only accelerate BVH traversal, not intersection 

→Limits potential speedup (Amdahl’s Law)

Method #1: “OptiX-BVH”



NVIDIA Confidential

• Problem: Can only accelerate traversal. (Illustration)

→ Q: How can we use even more of RTX HW?

• How can we et rid of CUDA intersection?

• How can we get rid of alternating HW-trav / SW isec?

Method #2: “RTX (replicated) Faces”

SM(CUDA)

RTCore

Ray Gen

BVH Trav

Tet Isec

Trav

Isec

Trav

Isec

…



NVIDIA Confidential

• Core observations 

a) Any ray leaving sample will have to hit one of enclosing tet’s faces

b) Faces are triangles (and RTX supports triangles!)

→Trace rays against tet faces, use RTX Triangle HW

• Represent each tet through its four face triangles

• Tag each face with ID of its tet ID (index.w=tetID)

• Trace non-zero length ray (arbitrary direction), find closest face

→Closest-hit program reads index.w … there’s your tet!

Method #2: “RTX (replicated) Faces”



NVIDIA Confidential

Method #2: “RTX (replicated) Faces”

• Core observations 

a) Any ray leaving sample will have to hit one of enclosing tet’s faces

b) Faces are triangles (and RTX supports triangles!)

→Trace rays against tet faces, use RTX Triangle HW

• Represent each tet through its four face triangles

• Tag each face with ID of its tet ID (index.w=tetID)

• Trace non-zero length ray (arbitrary direction), find closest face

→Closest-hit program reads index.w … there’s your tet!



NVIDIA Confidential

• Core observations 

a) Any ray leaving sample will have to hit one of enclosing tet’s faces

b) Faces are triangles (and RTX supports triangles!)

→Trace rays against tet faces, use RTX Triangle HW

• In theory, now much more work than point location

• 4x num prims

• BVH over triangles, not boxes

• Non-infinitesimal rays: Actual traversal

• Ray-triangle tests

• But: With hardware support

• All of traversal & isec, SM only gets final hitpoint

Method #2: “RTX (replicated) Faces”



NVIDIA Confidential

• Caveat #1: Have to find the right faces

• Adjacent triangles each produce same face

• Have to make sure we report the “right” one!

• Solution: Inward-facing triangles + “Back-face” Culling 

• Supported by RTX → “free”

Method #2: “RTX (replicated) Faces”



NVIDIA Confidential

• (Unexpected) Caveat #2: Query points outside any tet

• May report “false positive”

→Require additional (software-)point-in-tet test on “final” closest hit

• Only one such test per sample … but still expensive 

Method #2: “RTX (replicated) Faces”



NVIDIA Confidential

• Q: Can we avoid this final software test?

• Idea: Store shared faces

• Shared faces only stored once

• Tagged with ID of both tet on front, and that on back (-1 = none)

• In closest hit program: → rtIsTriangleHitBackFace() (cheap)

Method #3: “RTX (shared) Faces”



NVIDIA Confidential

• Q: Can we avoid this final software test?

• Idea: Store shared faces

• Con:

• Required precompute pass (host, tricky )

• Pro:

• 2x fewer triangles, cheaper BVH

• Automatically fixes “outside any tet” case (tetID=“-1”) → faster

Method #3: “RTX (shared) Faces”



NVIDIA Confidential

Evaluation



NVIDIA Confidential

Evaluation: HW/SW Setup

- Host: Regular PC

- Intel Core i7–5930k CPU, 32 GB Ram

- Software Stack

- Linux (Ubuntu 18)

- Nvidia Driver 418.35 (regular, public driver)

- OptiX version: initially 5.5, then 6.0 after release

- Three GPUs: Both pre- and post-RTX

- V100 (Volta) : Pre-RTX, high-end, for reference

- 5120 cores @ 1.2Ghz , 12 GB HBM2 Memory, no dedicated RT Cores

- RTX 2080 FE: Turing w/ RTX support

- 2944 cores @ 1.8GHz, 46 RT Cores, 8 GB DDR6 RAM

- Titan RTX: Turing w/ RTX

- 4608 cores @ 1.35 GHz, 72 RT Cores, 24 GB DDR6 RAM



NVIDIA Confidential

Evaluation: Data Sets

- Four different tet data sets, varying complexity

- Only tets for now

- (generalization “in the works”)

- Only focused on “realistically large” data sets

- Some data sets also contain triangles (“bathymetry”, outlines, …)

- Some require interpolation (per vertex data ) others not (per cell)



NVIDIA Confidential

Memory …



NVIDIA Confidential

Memory: RTX vs pre-RTX

~2x

~4x

~3x
Significantly lower memory 

usage on RTX-enabled HW



NVIDIA Confidential

Memory: Pre-Splitting vs Naive

-70%

-60%

<inf>

<inf>

Pre-splitting reduced peak 

mem usage by ~2x

(~same final mem & perf)



NVIDIA Confidential

Memory: Per Method …

2+x worse

3x worse

~same

Adding (many) triangles 

creates significant mem 

overhead… surprise! 



NVIDIA Confidential

Performance

- Let’s run some more experiments …

a) “Synthetic” cost-per-sample

b) “Integrated” volume render performance



NVIDIA Confidential

Performance - Synthetic



NVIDIA Confidential

Performance - Synthetic

Note: “Random” is designed to be bad.

(guaranteed to diverge, for every sample)

Across all experiments, see perf drop by ½ to full OOM

~7x

11x

~2.5x



NVIDIA Confidential

Performance - Synthetic

More interesting: How do methods compare? 

Start with pre-RTX….



NVIDIA Confidential

Performance - Synthetic

Pre RTX Hardware:

Perf at best stays about same (random samples)…



NVIDIA Confidential

Performance - Synthetic

Pre RTX Hardware:

Perf at best stays about same (random samples)…

… and for uniform samples: more than 2x worse!

(yes, if both are in software, “ray trace” and 

“triangles” are more expensive than “point 

query” and “points”!)



NVIDIA Confidential

Performance - Synthetic

With Hardware Acceleration (2080 or Titan RTX):

Perf gets continually better the more RTCore we use.

From ~1.5x ...



NVIDIA Confidential

Performance - Synthetic

With Hardware Acceleration (2080 or Titan RTX):

Perf gets continually better the more RTCore we use.

… to up to almost 7x ...



NVIDIA Confidential

Performance - Synthetic

With Hardware Acceleration (2080 or Titan RTX):

Perf gets continually better the more RTCore we use.

… and ~3x on avg



NVIDIA Confidential

Performance – Volume Ray Marching

• Integrated Variants into Actual Volume Ray Marcher

• Important: Sample-based! (not tet marching, projected tets, etc)

• Ie, one ray per sample – NOT per pixel

• Also trace “some” (geometry) rays for bathymetry (with AO)



NVIDIA Confidential

Performance – Volume Ray Marching

Roughly same results as for synthetic:



NVIDIA Confidential

Performance – Volume Ray Marching

Roughly same results as for synthetic:

- Perf drops for pre-RTX HW …



NVIDIA Confidential

Performance – Volume Ray Marching

Roughly same results as for synthetic:

- Perf drops for pre-RTX HW …

- … but it does pay off w/ HW Accel (by ~1.5-3x)



NVIDIA Confidential

Performance – Volume Ray Marching

Eventually: Speedup for every dataset.

Bottom line: Re-formulating point location as a ray 

tracing problem does more work … but still makes it 

faster because of hardware acceleration!



NVIDIA Confidential

Summary

• In this paper 

• Encouraged to look at RT Cores “beyond ray tracing”

• Our example: Tet-mesh point location / volume sampling

• Proposed four different methods

• With increasing degrees of using RTX

• General scheme: do more work - but get it done faster through HW

→Successful proof-of-concept

• Early work, but already ~2x speedup in actual unstructured-data 

volume renderer



NVIDIA Confidential

Future Work

• Lots of opportunities for rendering / visualization

• Biggest-ticket item: Space skipping / adaptive sampling

(already working on that)

• More general: Now that RT is that fast, what else can we use it for?



NVIDIA Confidential

Future Work

• Lots of opportunities for rendering / visualization

• Biggest-ticket item: Space skipping / adaptive sampling

(already working on that)

• More general: Now that RT is that fast, what else can we use it for?

• Interesting questions for non-gfx CS practitioners

• What else could we use RT Cores for? Beyond rendering!?



NVIDIA Confidential

Future Work

• Lots of opportunities for rendering / visualization

• Biggest-ticket item: Space skipping / adaptive sampling

(already working on that)

• More general: Now that RT is that fast, what else can we use it for?

• Interesting questions for non-gfx CS practitioners

• What else could we use RT Cores for? Beyond rendering!?

• Interesting questions for HW designers

• What if we could trace things other than rays?

• What if we had prims other than triangles?

• What kind of workloads could we accelerate then?



NVIDIA Confidential

Questions…



NVIDIA Confidential

• Reference: Exactly that method… just in CUDA

• Build BVH over tets (on the host), then upload to GPU

• Use quad-BVH, with node quantization [Benthin et al’18]

• No particular reason – that code was just available

• Sample() method traverses BVH and performs point-tet tests

• Renderer ray marches, calls “sample()”, calls XF, integrates, …

• Implementation Notes

• Reasonably complete volume ray tracer, but not “crazy” advanced

• “Plain” CUDA implementation, but within OptiX

• Ie, use OptiX frame buffer, multi-GPU, “raygen” program etc

→ Allowed for sharing code infrastructure w/ other kernels

• But: Plain CUDA code in raygen program, no rtTrace() etc.

Reference Method: “CUDA BVH”



NVIDIA Confidential

Memory: Per Method …

-~40%
But shared-faces method 

much better than replicated



NVIDIA Confidential

Implementation 

Notes



NVIDIA Confidential

• For face-methods: Can no longer use 0-length rays

• Infinite-length is correct, but expensive

• Solution: Precompute maximum edge length

• Guaranteed long enough to reach faces → correct

• Much faster (avoids traversing far-away regions)

Ray Length



NVIDIA Confidential

• AnyHit Programs in OptiX

• Called on any valid intersection during a traversal

(ie, not just the final, closest one)

• Eg, useful for accumulating opacity for shadow rays

• But: Can lead to overhead when not using them

• “Not specifying AH Program” != “not having one”

• By default, OptiX assigns “empty” AnyHit program

• Even an “empty” program must run on the SM 

→Switch from HW traversal to “empty” CUDA prog for every isec!

→Significant call overhead, even when doing “nothing”

• Tip: If you don’t need them, disable them!

• E.g., rtTrace(…RT_RAY_FLAG_DISABLE_ANYHIT…);

• In our implementation, at times seen ~10% final frame difference

Disabling Any-Hit



NVIDIA Confidential

• Problem(s): BVH Peak Mem limits max model size

a) BVH builder needs (non-trivial) temp memory during build

→ “peak” mem (during build) much higher than “final” mem (render)

b) No “graceful degradation” if peak mem > available GPU mem

→ Peak Mem > Available GPU Mem: “Allocation Error” …

→Several tested data sets initially didn’t work….

… even if final memory was << GPU memory

Pre-Splitting



NVIDIA Confidential

• Problem(s): BVH Peak Mem limits max model size

• Suggestion: “Pre-split”

• Don’t create one big optix::GeometryGroup over all prims/tris

• Instead: on host, pre-split prims into multiple (T)GGs ….

• E.g., “chunks” of max 1M prims/tris

• Using simple spatial median parititoning seems fine

• …. then create second-level group over those (T)GGs

• Ideally, “force” a build with a rtLaunch(0,0,0) for each (T)GG

→ Significantly limits peak mem usage 

• … to peak mem of any chunk

• (Apparently) negligible performance impact

• Does force a two-level BVH, but since RTX supports that ….

Pre-Splitting


