
1

An Analysis of Region Clustered BVH Volume Rendering on GPU

David Ganter1 and Michael Manzke2

School of Computer Science and Statistics
Trinity College Dublin
Ireland

1ganterd@scss.tcd.ie
2manzkem@scss.tcd.ie

2 Direct Volume Rendering
Applications

• Medical

• 3D MRI Scans

• Scientific

• Acquired Data

• Simulations

3 Direct Volume Rendering
Background

• In this work we consider 'volumes' to be regular 3D
grids of discrete scalar data volume elements (voxel)

• Volume is resampled by ray at regular intervals

• Scalar value is translated to colour and opacity by a
transfer function

• In our case this is a 1D Look-up-table

• Ray can be traversed front-to-back or back-to-front
using either under or over compositing operator

4 Direct Volume Rendering
Optimisations

• Early Ray Termination (ERT)

• Once an opacity threshold is reached, stop sampling ray

• Empty Space Skipping (ESS)

• Regions of the volume that don’t translate to any opacity don’t need to be sampled

5 Direct Volume Rendering
Empty Space Skipping (ESS)

• In Essence

• Divide volume into regions of the same size

• If any voxels in region have opacity greater than zero, region is considered active

• If region is inactive, the ray can skip over the empty space to avoid sampling non-

contributing data

6 Background
GPU Based ESS

• Octrees are popular

• Regions – or bricks – make up octree leaves

• Inner nodes marked as active/inactive based on leaves

• Ray traverses from top down

• Inner nodes can be skipped

• But:

• Fine-grained regions = deeper octrees = potentially more expensive traversal

• Especially with sparse or thin strands of voxels

7 Background
Sparseleap (Hadwiger et al 2018)

• Uses octree to generate “occupancy geometry” on CPU when TF updates

• Geometry is rasterized on GPU in front-to-back order

• Gives a list of per-ray entry-exit events

• Events can be merged on the fly if criteria are met

• Ray traversal now just uses entry-exit event list

• But:

• Occupancy geometry is still tied to octree subdivision bounds

• Occupancy geometry needs to be rasterised when camera moves

8 Background
Bounding Volume Hierarchies

• Can represent sparse or thin strands of data with less nodes

• Less nodes can equate to less traversal for ESS

• Traditionally suited to continuous space data like polys (i.e. not on a regular grid like voxels)

• Have not been traditionally used in GPU DVR, partly due to build times, partly to traversal logic

9 Background
BVH in Direct Volume Rendering

CPU

Knoll et al. 2011 (and subsequent work)

• Used BVH on CPU for full-resolution direct volume rendering

GPU

• ?

10 Background
NVidia OptiX & RTX

OptiX

• Ray-tracing API

RTX RTCore

• New hardware for Ray-BVH logic

Why not re-evaluate BVHs as a standard for GPU-based ESS for Direct Volume Rendering?

11 Approach
Assumptions

Like Sparseleap:

• Just focussing on ESS portion of DVR

• Underlying sampling is abstracted

• Uses paged region/brick pool

• Sampling brick size is not necessarily same as ESS region size

• Might be optimised for disk IO or cache

12 Approach

1. Divide volume into regions, storing min/max voxel values

2. When TF updates, regions are quickly tested in parallel.

3. Now we have an array of active/inactive regions (can be stored as bit-string)

4. Spatial bounds of active regions are given to OptiX as AABBs

5. Tell OptiX to ray-trace

13 Experiment Data

14 Experiment Data

15 Observation
Depth Complexity

16 Observation
Depth Complexity

17 Clustering Approach

Many contiguous groups of active regions

• Many regions share borders, needlessly subdividing the space in the BVH

• We cluster cube-shabed groups of active regions (2x2x2, 3x3x3, 4x4x4 regions, etc)

• Prefer to cluster the largest regions first

• How can we do this efficiently on CPU before giving AABBs to OptiX?

18 Clustering Approach
3D Summed Area Table (3DSAT)

• Sweep across the active regions array searching for groups of completely

active regions

• If considered as a 3D array of active/inactive flags (0/1) we create a 3D

summed area table, adding 1 to the sum for every active region.

• Example: a cluster of 3x3x3 active regions will have a summed-area

of 27

• 3DSAT allows us to query how many active regions in an area with 8

lookups.

• Keep another bit-string that represents currently clustered regions

(regions that have already been added to a cluster)

• Sweep in descending order of cluster size (643, 633, 623, etc)

19 Clustering Approach
3D Summed Area Table (3DSAT)

-

20 Clustering Approach
Depth Complexity

21 Clustering Approach
Depth Complexity

22 Approach

1. Divide volume into regions, storing min/max voxel values

2. When TF updates, regions are quickly tested in parallel.

3. Now we have an array of active/inactive regions (can be stored as bit-string)

4. Clustering

5. Spatial bounds of active regions are given to OptiX as AABBs

6. Tell OptiX to ray-trace

23 Experiment System

CPU

• Intel Xeon E5-1620 v2

GPU

• Nvidia RTX2080

24 Results
Clustering vs No Clustering

25 Results
Sparseleap vs OptiX Cluster

26 Results
RTX On vs RTX Off (Stubbed Sampling)

27 Result
Data

28 Conclusion

• We have shown that BVHs are a viable candidate for GPU direct volume rendering

• We observe that new ray-tracing hardware can benefit GPU direct volume rendering performance

• We show that BVH build times should not be considered a hindering factor

• We give one approach to reduce BVH complexity

29 Possible Future Work

• Use a clustering heuristic that allows <100% active groups of regions to be clustered

• Cluster non-cubed shapes (2x2x8, 1x4x16, etc)

• Investigate with more volumes

• Translate work to Time-Varying or Steaming Volume Data

30 Any Questions?

github.com/ganterd/optixdvr

