HMLFC: Hierarchical Motion-Compensated Light Field Compression for Interactive Rendering

Srihari Pratapa¹ & Dinesh Manocha²

University of North Carolina at Chapel Hill¹ University of Maryland at College Park²

High Performance Graphics, July 2019

Light Fields (LF)

- Capture the scene by storing all the light rays
- Render the scene using the light rays
- Photo-realistic rendering of the scene

[Adelson et al. 1991]

Light Fields (LF)

Highly complex scenes

- Light rays are sampled using camera images
- Render new views by filtering sampled light rays

Joan Charmant 2015

Light Fields: Representation

 Several ways to represent the idea are proposed [McMillan et al. 1995] [Shum et al. 2004]

Intensity of light rays stay constant

• 4D representations: L = P(u, v, s, t)[Gortler et al. 1996, Levoy et al. 1996]

Two planes: (u, v) & (s, t)

Light Fields: Capturing

Light rays are captured using large array of camera images

Stanford Camera Rig

Challenges

- Parameterizing the scene
- Capturing the scene using images
- Representations of the images
- Compression of the captured images
- Rendering from the sampled images

Challenges

- Parameterizing the scene
- Capturing the scene using images
- Representations of the images
- Compression of the captured data
- Rendering the scene back

Data – Rendering Quality

High image sampling rate (1K – 10K images) [chai

High resolution of image samples (1K, 2K)

Major bottle neck in terms of storage, transmission, and real-time rendering

Data – Real-time Rendering

- Parallel processing is required for real-time rendering
- New views are generated using filtering from the captured images
- Fast parallel access to the pixel values
- Image samples should be present in video memory

Ray Tracing

Levoy et al. 96

Rendering

 Rendering a new view requires only small set of pixels from image samples

Captured Images

Rendered views

Compression: Requirements

- Storing uncompressed data is expensive
- Random Access Decode only the required set of pixels
- Fast low-latency decoding capability
- Video memory & memory bandwidth are scarce on mobile devices

Organization

- Introduction
- Background
- Our Approach HMLFC
- HMLFC Implementation
- Results
- Limitations & Future Work

Background: LF Compression

- High efficiency compression schemes
 - Modified MPEG and JPEG schemes
 - Girod et al. [2003] Magnor et al. [2000] Chen et al. [2018] Liu et al. [2016] Perra et al. [2016]: ~ 100 500X
- Schemes that enable random access
 - Vector quantization [Levoy et al. 1996]: ~ 40X
 - Wavelet based hierarchy [Peter et al. 2001] : ~ 20-40X
 - MRF with Just-in-time [Zhang & Li 2000] : ~ 80X
 - RLFC [Pratapa & Manocha 2019] : ~ 20 200X

LF Compression: Ideal Requirements

- High efficiency compression schemes
- Random Access
- Ideal compression scheme
 - High compression efficiency
 - Low memory footprint

LF Compression: Motion vs. Hierarchy

- Motion compensation compression schemes
 - Girod et al. [2003]; Magnor et al. [2000]; Chen et al. [2018]; Liu et al. [2016]; Perra et al. [2016]: ~ 100 500X
 - o MRF with Just-in-time [Zhang & Li 2000]: ~80X

- Hierarchical compression schemes
 - Wavelet based hierarchy [Peter et al. 2001] : $\sim 20 40X$
 - RLFC [Pratapa & Manocha 2019] : ~ 20 − 200X
 - Hierarchical coding of light fields [Magnor & Girod 1999] : ~ 40 100X

Overview: Motion Compensation

: Light Field Image

 R_i : Reference Images $\{P_i^0, P_i^1, \dots, P_i^7\}$: Predictive Images

Redundancy in grids:

o
$$R_i < --> \{P_i^0, P_i^1,, P_i^7\}$$

- Redundancy between grids?
- Redundancy between (R_i <--> R_i)
- Redundancy between (R_j <--> P_i^k)

Overview: Hierarchical Schemes

- The entire LFI are transformed using image processing and manipulations
- Captures redundancies across all the LFI
- Redundancy captured is limited

LF Compression: Categories

Motion compensation

Exhaustive search for redundancy using motion vectors

- Efficiently exploit the local coherence among LFI
- Select reference images from LFI & predict the rest using motion vectors

Hierarchical compression

- Image transformations and manipulation to separate redundancies
- Exploit the global coherence among LFI
- Build a hierarchy of new parent & child images using the transformations

Organization

- Introduction
- Background
- Our Approach HMLFC
- HMLFC Implementation
- Results
- Limitations & Future Work

Key Idea: Hybrid Approach Level: 3

R_i: Reference Images {P_i⁰, P_i¹,, P_i⁷}: Predictive Images

Apply motion compensation at all levels

HMLFC: Hierarchical Motion-compensated Light Field Compression

- Motion compensation schemes and hierarchical schemes capture different kind of redundancies
- Optimize the compression by merging different redundancies in both approaches

HMLFC: Main Challenges

- The structure of the hierarchy should remain the same
- New motion compensation method for transformed images
- Over-heads should be minimal

Organization

- Introduction
- Background
- Our Approach HMLFC
- HMLFC Implementation
- Results
- Limitations & Future Work

HMLFC Implementation on RLFC

- RLFC [Pratapa & Manocha 2019] as the hierarchical scheme
- **RKV:** Representative Key Views
 - Redundancies across the LF
- **SRV:** Sparse Residual Views
 - Specific details of the LF
- Encoding the RKV & SRV

RLFC Overview

Light Field Images

$$RKV_j^l = \sum_{I \in C_j^{(l-1)}} w_{jI}^{(l-1)} \times I.$$

RKV: Representative Key Views

Sparse residual views
$$(SRV_i)^{(l-1)} = (RKV_i)^{(l-1)} - (RKV_p)^l$$

SRV: Sparse Residual Views

RLFC Overview

Hybrid approach for RLFC

Compute the RLFC hierarchy

Apply motion compensation to all the level of hierarchy

HMLFC: Extending RLFC with Motion Vectors

- Lot of redundancy between SRV images
- Block based motion compensation
- Small blocks in predictive image are motion compensated
- Search in a given window in a reference image
- Find the best matching block

Reference image Predictive image

Original Signal

250

Phase-shifted Motion Prediction

Series of shifted 2D – signals

HMLFC: SRV Images

- The data in the motion compensated SRV images is significantly less than original SRV images
- Reference frame is marked in red

Original SRV images

Motion compensated SRV images

Organization

- Introduction
- Background
- Our Approach HMLFC
- HMLFC Implementation
- Results
- Limitations & Future Work

Results: Data Sets

Data sets – Stanford new LF archive

Amethyst

Lego Knights

Tarot Cards

Bunny

Results: Compression rate/Quality

LF Dataset (Resolution): Size (MB)	Compression rate (bpp)	PSNR (dB)
Amethyst $(16 \times 16 \times 768 \times 1024) : 576$	0.045	40.7
Bracelet $(16 \times 16 \times 1024 \times 640) : 480$	0.143	40.1
Bunny $(16 \times 16 \times 1024 \times 1024) : 768$	0.027	41
Jelly Beans $(16 \times 16 \times 1024 \times 512) : 384$	0.029	40.5
Lego Knights $(16 \times 16 \times 1024 \times 1024)$: 768	0.157	41
Lego Gallantry $(16 \times 16 \times 640 \times 1024)$: 480	0.155	40.1
Tarot Cards $(16 \times 16 \times 1024 \times 1024) : 768$	0.68	40.3

- Compression ratio: $\sim 30 800X$
- Analysis on the Stanford LF archive

HMLFC: Comparison

- Similar compression quality
- Improvement factor: $\sim 2 5X$

Data set	RLFC (bpp)	HMLFC (bpp)	Improvement factor
Bunny	0.145	0.073	1.9X
Amethyst	0.137	0.045	3X
Bracelet	0.52	0.143	3.6X
Jelly Beans	0.172	0.029	5.5X
Lego Knights	0.62	0.157	4X
Tarot Cards	2.20	0.68	3.2X

HMLFC: Comparsion

Lower is better

 HMLFC does better than both RLFC and motion-compensation

HMLFC

PSNR: 40.3

BPP: 0.68 (3.2 X)

HMLFC: Visual Quality

- Visual quality in comparison with RLFC
- Similar quality of compression (PSNR)
- Visual quality same as RLFC

Results: Rendering Speeds

- Generate new views using LF renderer with GPU decoder
- Hardware used: NVIDIA GTX 960 (2GB) and Intel Xeon (2.4GHz)
- Image resolution (512 X 512)
 - ∘ Avg. frames per second: ~200 fps
- Image resolution (1024 X 1024)
 - Avg. frames per second: ~110 fps

HMLFC: Conclusion

- HMLFC: Hierarchical Motion-Comepensated Light Field Compression
- RLFC as the underlying hierarchical scheme
- Phase-shifted motion compensation to all the levels of the hierarchy
- Factor of 2-5X improvement in compression rates for the same quality

Organization

- Introduction
- Background
- Our Approach HMLFC
- Results
- Limitations & Future Work

HMLFC: Limitations

- Benefits are limited to finding a suitable motion-compensation method
- No fine grain control over the encoding parameters
- Unoptimized GPU decoder in terms of memory operations

HMLFC: Future Work

- Extend to other LF parameterizations (spherical & unstructured)
- Use sub-pixel motion compensation to search for a matching block
- Extend the current ideas for light field videos
- Integrate our method in a end-to-end LF rendering system

Acknowledgements

The research was supported in part by Intel

• Reviewers for great feedback

Thank you!

Questions?

BACK-UP SLIDES

Light Fields: Parameterizations

UnStructured

Sampling of the Light Rays

Sample by taking 2D photographs

Levoy et al. 96

Light Fields: Revival

- Recent developments in capturing & displays
- Google Welcome to Light Fields[Overbeck et al. 18]
- Spherical LF representation (360° FOV)
- Image samples captured: 8K; Image resolution: 1K; Data size ∼8GB

"VR is still a novelty, but Google's light-field technology could make it serious art"- MIT Technology review

Encoding SRV

- Sparse high frequency images
- Discard insignificant blocks
- Bounded Integer Sequence Encoding (BISE)
- Encodes integer values using BISE from ASTC [Nystad et al. 12]

Encoding RKV

 Properties are similar to standard color images

• Compress using JPEG2000

HMLFC: Hierarchical Motion-compensated Light Field Compression

- Improve the compression by combining the orthogonal dependencies
- A hybrid approach to combine both the approaches

HMLFC: Decoding properties

- The hierarchical structure of RLFC remains the same in HMLFC
- Tree traversal decoding to decode the motion compensated blocks
- One additional motion recompensation step to compute original block
- Decoding properties Random access, parallel access are preserved

HMLFC: Rate Distortion

Variation with block size

<u>[</u>	LF Dataset	Metric	Block	Block	Block
			Size: 2	Size: 4	Size: 8
	Amethyst	PSNR	38.7	43.69	48.35
		bpp	0.0592	0.106	0.707
	Bunny	PSNR	40.52	43.35	47.52
		bpp	0.0173	0.0411	0.548
	Bracelet	PSNR	37.03	44.15	48.79
		bpp	0.033	0.35	1.108
	Knight	PSNR	38.27	43.046	47.89
		bpp	0.096	0.243	1.15
	Beans	PSNR	37.3	44.53	49
		bpp	0.0067	0.052	0.377
	Gallantry	PSNR	37.22	42.54	46.95
		bpp	0.0235	0.235	1.08
	Tarot	PSNR	36.98	42.14	46.79
	14101	bpp	0.272	0.831	2.6
	Beans	PSNR bpp PSNR bpp PSNR	37.3 0.0067 37.22 0.0235 36.98	44.53 0.052 42.54 0.235 42.14	49 0.377 46.95 1.08 46.79

HMLFC: Rate Distortion

 Variation with block thresholding

HMLFC: Decoding times

• YCoCg-r color space [Malvar et al. 2008]

Block size 8X8

Channel	RLFC	HMLFC	
	(microseconds)	(microseconds)	
Y - Channel	2.61	3.32	
Co - Channel	1.62	2.86	
Cg - Channel	1.42	2.21	

NVIDIA GTX – 960 (2GB) and Intel Xeon (2.4GHz)