Why Learn Something You Already Know?

Jaakko Lehtinen

Aalto University

NVIDIA Research

Finnish Center for Artificial Intelligence

EGSR 2019 & HPG 2019 Strasbourg, France, July 10 2019 (What I won't talk about)

Slide adapted from Miika Aittala

© Rhythm & Hues

Lighting

Geometry

Rendering

Radiative Transport Equation (Chandrasekhar, 1960)

$$\omega \cdot \nabla_x L(x, \omega) = \epsilon(x, \omega)$$

$$-\sigma_t(x) L(x, \omega)$$

$$+\sigma_s(x) \int_{4\pi} p(x, \omega, \omega') L(x, \omega') d\omega'$$

Graphics is simulation(*)

Simulator ~

computational model with interpretable inputs and outputs

$$\omega \cdot \nabla_x L(x, \omega) = \epsilon(x, \omega)$$
$$-\sigma_t(x) L(x, \omega)$$
$$+\sigma_s(x) \int_{4\pi} p(x, \omega, \omega') L(x, \omega') d\omega'$$

(Many!)
interpretable parameters

Model

Lambert Phong

Blinn

BRDF:

Bidirectional

Reflectance

Distribution

Function

Cook-Torrance etc.

Slide: Miika Aittala

Content is king

Photograph

Rendering
2 triangles + captured SVBRDF
[Aittala et al. SIGGRAPH 2013]

Content is king

Photograph

Rendering
2 triangles + captured SVBRDF
[Aittala et al. SIGGRAPH 2013]

Interpretable

~

Physically meaningful Perturbing inputs (mostly) has predictable effect

Takeaway 1:

Hi-fi visuals correlate with meaningful properties

We know something about the material(*)

Takeaway 2:

Even simple real-time models are powerful

Deep Learning

Deep Learning

Does it have similar properties?

Adversarial Examples

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES

Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy Google Inc., Mountain View, CA {goodfellow, shlens, szegedy}@google.com

Adversarial Examples

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES

50K images distill

Tongzhou Wang

Facebook AI Research, MIT CSAIL

Jun-Yan Zhu MIT CSAIL

Antonio Torralba MIT CSAIL **Alexei A. Efros** UC Berkeley

100 images

Adversarial Examples Are Not Bugs, They Are Features

Andrew Ilyas*
MIT
ailyas@mit.edu

Shibani Santurkar*
MIT
shibani@mit.edu

Dimitris Tsipras* MIT tsipras@mit.edu

& al.

"frog"

Orig.

"airplane"

"ship"

Non-robust dataset

Proc. ICLR 2019

IMAGENET-TRAINED CNNs ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROBUSTNESS

(a) Texture image

81.4%	Indian elephant
10.3%	indri
8.2%	black swan

(b) Content image

71.1%	tabby cat
17.3%	grey fox
3.3%	Siamese cat

(c) Texture-shape cue conflict

63.9%	Indian elephant
26.4%	indri
9.6%	black swan

Is machine learning all broken then?

The New York Times

How an A.I. 'Cat-and-Mouse Game' Generates Believable Fake Photos

Progressive GANs T. Karras, T. Aila, S. Laine, J. Lehtinen

<u>linkki</u>

By CADE METZ and KEITH COLLINS JAN. 2, 2018

Data-driven generative models

Training set = samples of desired output

Data-driven generative models

Trained generator

Data-driven generative models

Do GANs learn "meaningful" things? Kind of

Proc. ICLR 2019

GAN DISSECTION: VISUALIZING AND UNDERSTANDING GENERATIVE ADVERSARIAL NETWORKS

David Bau^{1,2}, Jun-Yan Zhu¹, Hendrik Strobelt^{2,3}, Bolei Zhou⁴, Joshua B. Tenenbaum¹, William T. Freeman¹, Antonio Torralba^{1,2}

¹Massachusetts Institute of Technology, ²MIT-IBM Watson AI Lab, ³IBM Research, ⁴The Chinese University of Hong Kong

"Latent arithmetic"

Original sample

+ "smile vector"

+ more "smile vector"

Puzer: StyleGAN latent projection + "smile direction"

Entangled, must "excavate" latent space

No control(*), no guarantees

Bigger picture: simulation vs. black boxes

Simulators

Data-driven generative models

Known for long: Ability to generate helps other tasks

Simulation from model matches input

<=>

Model is probably correct

"Analysis by synthesis"

Blanz & Vetter SIGGRAPH 99

Very strong prior

Still, optimization to match appearance is hard

Bad parameterizations (local min., multi-valued)
Comparing pixels is bad (do not match "meaning")

Simulators

"meaningful", understandable data efficient hard to get truly realistic outputs data often lives in spaces with poor structure

Data-driven models
black box, uncontrollable
need lots of data
photorealistic results
learn to parameterize complex data manifolds

Interpolation in Progressive GAN latent space

Metrics matter

E-LPIPS: Robust Perceptual Image Similarity via Random Transformation Ensembles

Why learn something you already know?

(Don't get me wrong – it's interesting)

We know this very, very well!

picture

light

Meaningful inputs

Numerical solver

Output

Latent code

Trained generator

Output

Output

Numerical solver

"Meaningful representation"

"Meaningful representation"

Numerical solver

(Learned) **Discriminator** (Learned) Generator Generated Real images images

(Learned) **Discriminator**

(Learned) (Learned)

Generator Generator

Generated Generated shape material

Generated illumination

Render

Rendered images

Real images

Latent code

Training?

Meaningful representation

Output

Numerical solver

Latent code

Do *not* want to supervise with these!

Meaningful representation

Output

Numerical solver

"Here's a bunch of meshes, give me new ones"

or

"When you see this picture, output this mesh"

But with these,

like GANs

Output

Numerical solver

Do *not* want to supervise with these!

Meaningful representation

Set these as you like...

(Learned) (Learned)

Generator Generator Generator

Generated Generated shape material

Generated illumination

Render

Rendered images

Real images

So that these match

(Learned) **Discriminator**

Generated Generated shape material

Generated illumination

Real images

What do we need?

Latent code

Differentiable simulators

Meaningful representation

Output

Numerical solver

Differentiable Monte Carlo Ray Tracing through Edge Sampling

Proc. SIGGRAPH Asia 2018

Example

TZU-MAO LI, MIT CSAIL MIIKA AITTALA, MIT CSAIL FRÉDO DURAND, MIT CSAIL JAAKKO LEHTINEN, Aalto University & NVIDIA

Example 2 (supervision w/ 3D representation)

Soft Rasterizer: Differentiable Rendering for Unsupervised Single-View Mesh Reconstruction

Shichen Liu^{1,2}, Weikai Chen¹, Tianye Li^{1,2}, and Hao Li^{1,2,3}

¹USC Institute for Creative Technologies ²University of Southern California ³Pinscreen

{lshichen, wechen, tli}@ict.usc.edu hao@hao-li.com

(a) Synthetic Image

(b) Our reconstruction

(c) Real image

(d) Our reconstruction

Latent code

Good representations?

Meaningful representation

Output

Numerical solver

(Also need: way to compare prediction to observation)

Disclaimer: hot topic, lots of work out there

But we are far from completing end-to-end chain

Stepping back

Kahneman's Thinking, Fast and Slow

Fast: unconscious, automatic

Slow: "think it through", iteratively test hypothesis

Kahneman's Thinking, Fast and Slow

Fast: unconscious, automatic

~ learned inference

Slow: "think it through", iteratively test hypothesis

~ simulation, analysis by synthesis

Opportunity: people learn by combining both

Fast: unconscious, automatic

~ learned inference

Slow: "think it through", iteratively test hypothesis

~ simulation, analysis by synthesis

Curiosity-driven Exploration by Self-supervised Prediction

Deepak Pathak ¹ Pulkit Agrawal ¹ Alexei A. Efros ¹ Trevor Darrell ¹

Done in model-based RL – but with black-box models

(a) learn to explore on Level-1

(b) explore faster on Level-2

Conjecture:

building in prior knowledge in form of simulators has to make sense: data efficiency, interpretability

Claim:

visual simulation – graphics – is vital for building long-term autonomous agents that operate in the real world

Claim:

visual simulation – graphics – is vital for building long-term autonomous agents that operate in the real world

Thank you!