Efficient Incoherent Ray Traversal on GPUs
Through Compressed Wide BVHs

Henri Ylitie, Tero Karras, Samuli Laine

< NVIDIA.

High Performance Graphics 2017; July 28t 2017; Los Angeles, CA, USA

Inspiration

&

’ \
r 1
w78 \\ . N
il | J.II..I /
oy LAY N
il i:%v':«df i /i?f\ it 27 "N

Rendered with NVIDIA Iray

1200

=
o
o
o

800

600

400

Performance (Mrays/s)

200

—e—Binder and Keller 2016

—HH

1 2
Diffuse bounce

2 <ANVIDIA.

Motivation

GPU ray tracing performance limited by memory system
Low SIMD utilization with incoherent rays
Impressive results in CPU ray tracing using wide BVHs and compression

Full potential maybe not realized on GPUs yet?

3 NVIDIA.

Overview

8-wide BVH constructed with SAH-optimal widening

Compressed node storage format

Cheap octant-based fixed-order traversal

Traversal stack traffic eliminated through compression and usage of shared memory

Improved SIMD utilization through triangle postponing and dynamic ray fetching

Starting point: BVH traversal kernels by Aila, Karras and Laine [2012]

4 NVIDIA.

Overview

incoherent ray traversal performance

acceleration structure size

Compared to fastest previous method by Binder and Keller [2016] 5 <ANVIDIA

Bounding box quantization

Quantize child node AABBs to a local grid

Similar to [Mahovsky and Wyvill 2006;
Segovia and Ernst 2010; Keely 2014;
Vaidyanathan et al. 2016]

Quantization grid position and scale
stored in parent node

Decompression: Per child

by, =|py |+ 27ey|"| gy
by=py+2"ey- q,
b,=\p, 1+ 2%,|"|q,

/

Use full Constrain scale to Quantize to 8-bits
power-of-two, store per coordinate
exponent in 8 bits

precision

6 NVIDIA.

Child node index compression

Child nodes, triangles stored
contiguously in separate
arrays

Index of first child node,
triangle stored in node

8-bit field per child to encode
relative offset, child type

Up to 3 triangles/leaf

7 NVIDIA.

Internal node memory layout

8 children / node

Quantization grid 15B
Indexing information 17B
Quantized bounding boxes 48B
= Total 80B

Aila et al. [2012]

8

NVIDIA.

Traversal order

Approximate near-to-far traversal order is important
Most approaches sort by distance
8-element distance sorts are expensive
Sorting network -> 19 compare-and-swap operations [Knuth 1998]

Sort hits only -> high divergence

9 NVIDIA.

Octant-based traversal order

/NN

oct

11
10 order{0]| 00 | o1 | 10 | 11

0 order[11| 01 | 00 | 11 | 10
01 order{2]| 10 | 11 | 00 | 01
> X order[3] | 11 10 01 00

Store child nodes to memory in Morton order of their AABB centers
Approximately assigns each child to closest parent box corner
Traverse the nodes in order sortedChildren[i] = children[i * oct]

Doesn’t work well for partially filled nodes

10

NVIDIA.

Octant-based traversal order

Enumerate corners of parent bounding box (child slots) in Morton order

Optimize the way child nodes are assigned to the slots
Define a cost function for placing a child node with AABB center c in a slot s

Pick a diagonal ray with direction d, = (x1, +1, +1) that traverses slot s first
2D example: Slot 00 -> ray direction d; = (1, 1) 10 11

y
Cost(c, s) = (c - p)-d, < 8x8 table %
/

Distance from parent box center p projected on the ray direction 00 01

» X

Minimize total cost using the auction algorithm [Bertsekas 1992]

11 NVIDIA.

Octant-based traversal order

Relative number of intersection tests

250%

200%

150%

100%

50%

0%

Intersection test count by traversal order

193%

131%

124%
100%

109%

100%

ray-box ray-triangle

B distance-order M octant-order M random order

12 <A NVIDIA.

Reducing traversal stack traffic

Combine all sibling nodes of same type to a single 8-byte stack entry

32-bit base index, bitmask for individual items

child node base index | hits pad imask
Internal node test produces 0-2 stack entries 32 8 16 8
triangle base index pad triangle hits
Up to 8 internal nodes in each node group 32 8 24

Up to 24 triangles from up to 8 leaf nodes in each triangle group

13 NVIDIA.

Reducing traversal stack traffic

How to maintain the traversal order?

Define a traversal priority as reverse of the traversal order
priority = slot_index " (7 - oct)
Traverse nodes with highest priority first

Permute the hits-field: Internal nodes set bit corresponding to traversal priority
Find highest set bit to get node to traverse next

Reverse priority computation to obtain child slot index

14 NVIDIA.

Reducing traversal stack traffic

US]ng Shared memory Shared memory stack size
120
= Store as many stack entries to shared L 100 — |
memory as possible o N
é \ —
= 12 in our kernel g
= Spill rest of the entries to local memory % 40
= Happens very rarely % 20
= Eliminates practically all external memory 0
traffic 0 ! ’ ’ !

Diffuse bounce

——0 4 —e—8 12 —e—16

15 <ANVIDIA.

Improving SIMD utilization

Threads follow different paths in the tree
Especially with incoherent rays

Internal nodes traversed more often than
leaves

Only a few threads in a 32-lane warp active
in ray-triangle intersection test

16 NVIDIA.

Improving SIMD utilization

Postponing triangle intersection tests iangle bostooning threshold
120
m qutpone triangle intersections by pushing £ 100 B N e ——pm
triangle groups to stack 2 '%t
£ 80 —
B M
= Do this whenever less than 20% of active g
threads want to intersect triangles i
g 40
g 20
0
0 1 2 3 4
Diffuse bounce
=o—0% - disabled =—®=1(00 20% —*50%

17 <ANVIDIA.

Constructing wide BVHSs

Start with a binary SBVH with one triangle per leaf [Stich et al. 2009]

Form a wide BVH by collapsing nodes in a SAH-optimal fashion
Greedy top-down collapsing and splitting [Wald et al. 2008 ; Afra et al. 2013]

Our: Jointly optimize both internal nodes and leaves at the same time

18 NVIDIA.

Constructing wide BVHSs

Moving from bottom to top, process each node in the binary BVH

Compute and store optimal SAH cost for all configurations the node could have in the
final wide BVH:

Leaf
Wide internal node

Eliminated - subtree is represented as forest with 2-7 roots, placed as children of the
node’s parent. Ask child nodes how to optimally divide roots between them.

Backtrack from root and create wide nodes so that optimal cost is realized.

19

NVIDIA.

Constructing wide BVHSs

Improves the tradeoff between performance and memory usage

Compared to node collapsing method by Afra et al. [2013]
higher traversal performance

Lowers memory consumption, as many children per node (7.51 vs. 6.39),

20 NVIDIA.

Results

Benchmark setup

= Diffuse path tracing, measure ray cast time
for each bounce separately

= 2048x2048 resolution
= 15 scenes with 1-5 viewpoints each.

= Hardware: NVIDIA Titan X (Pascal)

22 <4 NVIDIA.

1400

1200

1000

800

Mrays/s

600

400

200

Ray traversal performance on NVIDIA Titan X, geometric mean over scenes

1 2 3

Diffuse bounce

—e—Aijla et al. 2012

23 <ANVIDIA.

1400

1200

1000

800

Mrays/s

600

400

200

Ray traversal performance on NVIDIA Titan X, geometric mean over scenes

1 2 3

Diffuse bounce

—o—Ailaetal. 2012 —e=Guthe 2014

24 <ANVIDIA.

Ray traversal performance on NVIDIA Titan X, geometric mean over scenes

1400

1200

1000

800

Mrays/s

600

400

200 e

o
[EY

2 3
Diffuse bounce

—e—Aijla et al. 2012 —e=—Guthe 2014 =®—Binder and Keller 2016

ll

25 <4 NVIDIA.

Ray traversal performance on NVIDIA Titan X, geometric mean over scenes

1400

1200

1000

800

Mrays/s

600

400

200 O

i

0 1 2 3
Diffuse bounce

=eo—Aijla et al. 2012 =—e=Guthe 2014 —®—Binder and Keller 2016 —®=Pérard-Gayot et al. 2017

26 <4NVIDIA.

Mrays/s

1400

1200

1000

800

600

400

200

=8—Ajla et al. 2012 —®=Guthe 2014 =—®—Binder and Keller 2016 =—®=Pérard-Gayot et al. 2017 =®=QOur method

Ray traversal performance on NVIDIA Titan X, geometric mean over scenes

——l = S
@ — —
e
— |
1 2 3 4

Diffuse bounce

27 <A NVIDIA.

Mrays/s

3000

2500

2000

1500

1000

50

o

o

Primary rays (bounce 0)

Sibenik

FairyForest CrySponza Conference ArabicCity Classroom PersianCity Veyron Bubs

H Binder and Keller 2016 M Our method

SodaHall

Hairball

PipersAlley Enchanted SanMiguel PowerPlant

Mrays/s

1200

1000

800

(o2}
o
o

40

o

20

o

o

Diffuse bounce 4

Sibenik

FairyForest CrySponza Conference ArabicCity Classroom PersianCity Veyron Bubs

H Binder and Keller 2016 B OQur method

SodaHall

Hairball

PipersAlley Enchanted SanMiguel PowerPlant

28 <A NVIDIA.

Memory bandwidth - node and triangle fetches

—5 kB

- = = (0.5X on average

—3 kB

2kB

1kB

0kB

Scene image i [Aila et al. 2012]

29 <4 NVIDIA.

Memory usage

Memory consumption of acceleration structure, geometric mean
over test scenes
80
70
60
50 = 0.27 - 0.47x compared to
£ 10 fastest previous method
g [Binder and Keller 2016]
230
20
. ' L
0
Aila et al. 2012 Guthe 2014 Binder and Keller Pérard-Gayot et Our method
2016 al. 2017

30 <4NVIDIA.

Questions?

Thank you!

< NVIDIA.

Improving SIMD utilization

Replacing terminated rays

= Rays in a warp finish traversal at different
times

= Low SIMD utilization with incoherent rays

= Fetch new rays to replace terminated ones:

= Persistent threads: Fetch when entire
warp is out of work [Aila and Laine 2009]

= Original: Fetch when more than 8 lanes
inactive [Aila and Laine 2009]

Relative traversal performance (%)

120

=
o
o

(o)
o

(o))
o

N
o

N
o

o

Dynamic ray fetch heuristic

%‘ SN
\/‘7
0 1 2 3 4

Diffuse bounce

=8—Persistent threads =@=OQOriginal

33 <ANVIDIA.

Improving SIMD utilization

Replacing terminated rays

= Fetch new rays to replace terminated ones:

= Persistent threads: Fetch when entire warp
is out of work [Aila and Laine 2009]

= Original: Fetch when more than 8 lanes
inactive [Aila and Laine 2009]

5 Keep track of lost work in the
warp since last ray fetch, fetch when a
threshold is exceeded

Relative traversal performance (%)

Dynamic ray fetch heuristic

120

100 — = o O ——
80 .)<\/t ————0
60
40
20
0
0 1 2 3 4

—8—Persistent threads

Diffuse bounce

=8—Qriginal

Improved

34 <ANVIDIA.

Constructing wide BVHSs

For each node in the binary BVH, starting from \ O
bottom: / \
Compute optimal SAH cost for subtree, 3 options /O\ A
Q Q
SN\
JANVANVANR O

Constructing wide BVHSs

For each node in the binary BVH, starting from O

bottom: A \A

Compute optimal SAH cost for subtree, 3 options

Create leaf

36 NVIDIA.

Constructing wide BVHSs

For each node in the binary BVH, starting from O
bottom: .\
Compute optimal SAH cost for subtree, 3 options /‘\ A
Create leaf O O
| SN N\
Create internal node /\ /\ /\ O

Constructing wide BVHSs

For each node in the binary BVH, starting from O

bottom: / \
Compute optimal SAH cost for subtree, 3 options ‘ T A

Create leaf /

Create internal node /\ /\

Create forest with 2 - 7 roots

Q
A A

38 NVIDIA.

Constructing wide BVHSs

For each node in the binary BVH, starting from O

bottom: / \
Compute optimal SAH cost for subtree, 3 options ‘ AK A

Create leaf / l

Create internal node /\ /\

Create forest with 2 - 7 roots

39 NVIDIA.

Constructing wide BVHSs

For each node in the binary BVH, starting from
bottom:

Compute optimal SAH cost for subtree, 3 options

Create leaf
Create internal node

Create forest with 2 - 7 roots

Backtrack decisions starting from root and create
wide nodes so that optimal cost is realized.

40 NVIDIA.

