
Henri Ylitie, Tero Karras, Samuli Laine

Efficient Incoherent Ray Traversal on GPUs 
Through Compressed Wide BVHs

High Performance Graphics 2017; July 28th, 2017; Los Angeles, CA, USA 



2

Rendered with NVIDIA Iray

0

200

400

600

800

1000

1200

0 1 2 3 4

Pe
rfo

rm
an
ce
	(M

ra
ys
/s
)

Diffuse	bounce

Binder	and	Keller	2016

Inspiration



3

Motivation

§ GPU ray tracing performance limited by memory system

§ Low SIMD utilization with incoherent rays

§ Impressive results in CPU ray tracing using wide BVHs and compression

§ Full potential maybe not realized on GPUs yet?



4

Overview
Combination of new and existing techniques

§ 8-wide BVH constructed with SAH-optimal widening

§ Compressed node storage format

§ Cheap octant-based fixed-order traversal

§ Traversal stack traffic eliminated through compression and usage of shared memory

§ Improved SIMD utilization through triangle postponing and dynamic ray fetching

§ Starting point: BVH traversal kernels by Aila, Karras and Laine [2012]



5

Overview

§ 2x incoherent ray traversal performance

§ 0.33x acceleration structure size

Compared to fastest previous method by Binder and Keller [2016]



6

Bounding box quantization

§ Quantize child node AABBs to a local grid

§ Similar to [Mahovsky and Wyvill 2006; 
Segovia and Ernst 2010; Keely 2014; 
Vaidyanathan et al. 2016]

§ Quantization grid position and scale 
stored in parent node

Use full
precision

Quantize to 8-bits
per coordinate

bx =	px +	2^ex ∙		qx
by		=	py +	2^ey ∙		qy
bz =	pz +	2^ez ∙		qz

Constrain scale toa
power-of-two, store 
exponent in 8 bits

§ Decompression:
Per parent node

Per child



7

Child node index compression

§ Child nodes, triangles stored 
contiguously in separate 
arrays

§ Index of first child node, 
triangle stored in node

§ 8-bit field per child to encode 
relative offset, child type

§ Up to 3 triangles/leaf



8

Internal node memory layout

§ Quantization grid 15B

§ Indexing information 17B

§ Quantized bounding boxes 48B

= Total 80B

8 children / node

10B/child

32B/child
Aila et al. [2012]



9

Traversal order

§ Approximate near-to-far traversal order is important

§ Most approaches sort by distance

§ 8-element distance sorts are expensive

§ Sorting network -> 19 compare-and-swap operations [Knuth 1998]

§ Sort hits only -> high divergence



10

Octant-based traversal order

§ Store child nodes to memory in Morton order of their AABB centers

§ Approximately assigns each child to closest parent box corner

§ Traverse the nodes in order sortedChildren[i] = children[i ^ oct]

§ Doesn’t work well for partially filled nodes

[Garanzha and Loop 2010]



11

Octant-based traversal order

§ Enumerate corners of parent bounding box (child slots) in Morton order

§ Optimize the way child nodes are assigned to the slots

§ Define a cost function for placing a child node with AABB center c in a slot s

§ Pick a diagonal ray with direction ds = (±1, ±1, ±1) that traverses slot s first

§ 2D example: Slot 00 -> ray direction ds = (1, 1)

§ Cost(c, s) = (c - p)·ds

§ Distance from parent box center p projected on the ray direction

§ Minimize total cost using the auction algorithm [Bertsekas 1992]

Idea: Optimize the child node assignment

8x8 table



12

Octant-based traversal order

100% 100% 109% 
124% 131% 

193% 

0% 

50% 

100% 

150% 

200%

250% 

ray-box ray-triangle

Re
la
tiv
e	
nu

m
be

r	o
f	i
nt
er
se
ct
io
n	
te
st
s

Intersection	test	count	by	traversal	order

distance-order octant-order random	order



13

Reducing traversal stack traffic
Compressing stack entries

§ Combine all sibling nodes of same type to a single 8-byte stack entry

§ 32-bit base index, bitmask for individual items

§ Internal node test produces 0-2 stack entries

§ Up to 8 internal nodes in each node group

§ Up to 24 triangles from up to 8 leaf nodes in each triangle group



14

Reducing traversal stack traffic
Compressing stack entries

§ How to maintain the traversal order?

§ Define a traversal priority as reverse of the traversal order

§ priority = slot_index ^ (7 – oct)

§ Traverse nodes with highest priority first

§ Permute the hits-field: Internal nodes set bit corresponding to traversal priority

§ Find highest set bit to get node to traverse next

§ Reverse priority computation to obtain child slot index



15

Reducing traversal stack traffic
Using shared memory

§ Store as many stack entries to shared 
memory as possible

§ 12 in our kernel

§ Spill rest of the entries to local memory

§ Happens very rarely

§ Eliminates practically all external memory 
traffic

0

20

40

60

80

100

120

0 1 2 3 4

Re
la
tiv
e	
tr
av
er
sa
l	p
er
fo
rm

an
ce
	(%

)

Diffuse	bounce

Shared	memory	stack	size

0 4 8 12 16



16

Improving SIMD utilization
Postponing triangle intersection tests

§ Threads follow different paths in the tree

§ Especially with incoherent rays

§ Internal nodes traversed more often than 
leaves

§ Only a few threads in a 32-lane warp active 
in ray-triangle intersection test



17

Improving SIMD utilization
Postponing triangle intersection tests

§ Postpone triangle intersections by pushing 
triangle groups to stack

§ Do this whenever less than 20% of active 
threads want to intersect triangles

0

20

40

60

80

100

120

0 1 2 3 4

Re
la
tiv
e	
tr
av
er
sa
l	p
er
fo
rm

an
ce
	(%

)

Diffuse	bounce

Triangle	postponing	threshold

0%	- disabled 10% 20% 50% 



18

Constructing wide BVHs

§ Start with a binary SBVH with one triangle per leaf [Stich et al. 2009]

§ Form a wide BVH by collapsing nodes in a SAH-optimal fashion

§ Greedy top-down collapsing and splitting [Wald et al. 2008 ; Afra et al. 2013]

§ Our: Jointly optimize both internal nodes and leaves at the same time



19

Constructing wide BVHs

§ Moving from bottom to top, process each node in the binary BVH

§ Compute and store optimal SAH cost for all configurations the node could have in the 
final wide BVH:

§ Leaf

§ Wide internal node

§ Eliminated – subtree is represented as forest with 2-7 roots, placed as children of the 
node’s parent. Ask child nodes how to optimally divide roots between them.

§ Backtrack from root and create wide nodes so that optimal cost is realized. 



20

Constructing wide BVHs

§ Improves the tradeoff between performance and memory usage

§ Compared to node collapsing method by Afra et al. [2013]

§ 1 – 4% higher traversal performance

§ Lowers memory consumption, 1.18x as many children per node (7.51 vs. 6.39), 



21

Results



22

Benchmark setup

§ Diffuse path tracing, measure ray cast time 
for each bounce separately

§ 2048x2048 resolution

§ 15 scenes with 1-5 viewpoints each. 

§ Hardware: NVIDIA Titan X (Pascal)

80k 174k 262k 283k 

407k 606k 762k 1.3M 

1.9M 2.2M 2.9M 4.1M 

7.5M 10.5M 12.8M 



23

0

200

400

600

800

1000

1200

1400

0 1 2 3 4

M
ra
ys
/s

Diffuse	bounce

Ray	traversal	performance	on	NVIDIA	Titan	X,	geometric	mean	over	scenes

Aila	et	al.	2012



24

0

200

400

600

800

1000

1200

1400

0 1 2 3 4

M
ra
ys
/s

Diffuse	bounce

Ray	traversal	performance	on	NVIDIA	Titan	X,	geometric	mean	over	scenes

Aila	et	al.	2012 Guthe	2014



25

0

200

400

600

800

1000

1200

1400

0 1 2 3 4

M
ra
ys
/s

Diffuse	bounce

Ray	traversal	performance	on	NVIDIA	Titan	X,	geometric	mean	over	scenes

Aila	et	al.	2012 Guthe	2014 Binder	and	Keller	2016



26

0

200

400

600

800

1000

1200

1400

0 1 2 3 4

M
ra
ys
/s

Diffuse	bounce

Ray	traversal	performance	on	NVIDIA	Titan	X,	geometric	mean	over	scenes

Aila	et	al.	2012 Guthe	2014 Binder	and	Keller	2016 Pérard-Gayot	et	al.	2017



27

0

200

400

600

800

1000

1200

1400

0 1 2 3 4

M
ra
ys
/s

Diffuse	bounce

Ray	traversal	performance	on	NVIDIA	Titan	X,	geometric	mean	over	scenes

Aila	et	al.	2012 Guthe	2014 Binder	and	Keller	2016 Pérard-Gayot	et	al.	2017 Our	method



28

0

200

400

600

800

1000

1200

Sibenik FairyForest CrySponza Conference ArabicCity Classroom PersianCity Veyron Bubs SodaHall Hairball PipersAlley Enchanted SanMiguel PowerPlant

M
ra
ys
/s

Diffuse	bounce	4

Binder	and	Keller	2016 Our	method

0

500

1000

1500

2000

2500

3000

Sibenik FairyForest CrySponza Conference ArabicCity Classroom PersianCity Veyron Bubs SodaHall Hairball PipersAlley Enchanted SanMiguel PowerPlant

M
ra
ys
/s

Primary	rays	(bounce	0)

Binder	and	Keller	2016 Our	method



29

Scene image [Aila et al. 2012] Ours 

8 kB

4 kB

0 kB

1 kB

2 kB

3 kB

5 kB

6 kB

7 kB

§ ≈ 0.5x on average

Memory bandwidth – node and triangle fetches



30

Memory usage

§ 0.27 - 0.47x compared to 
fastest previous method 
[Binder and Keller 2016]

0

10

20

30

40

50

60

70

80

Aila	et	al.	2012 Guthe	2014 Binder	and	Keller	
2016

Pérard-Gayot	et	
al.	2017

Our	method

Bt
ye
s	/
	tr
ia
ng
le

Memory	consumption	of	acceleration	structure,	geometric	mean	
over	test	scenes



31

Questions?



Thank you!



33

Improving SIMD utilization
Replacing terminated rays

§ Rays in a warp finish traversal at different 
times

§ Low SIMD utilization with incoherent rays

§ Fetch new rays to replace terminated ones:

§ Persistent threads: Fetch when entire 
warp is out of work [Aila and Laine 2009]

§ Original: Fetch when more than 8 lanes 
inactive [Aila and Laine 2009]

0

20

40

60

80

100

120

0 1 2 3 4

Re
la
tiv
e	
tr
av
er
sa
l	p
er
fo
rm

an
ce
	(%

)

Diffuse	bounce

Dynamic	ray	fetch	heuristic

Persistent	threads Original



34

Improving SIMD utilization
Replacing terminated rays

§ Fetch new rays to replace terminated ones:

§ Persistent threads: Fetch when entire warp 
is out of work [Aila and Laine 2009]

§ Original: Fetch when more than 8 lanes 
inactive [Aila and Laine 2009]

§ Improved: Keep track of lost work in the 
warp since last ray fetch, fetch when a 
threshold is exceeded

0

20

40

60

80

100

120

0 1 2 3 4

Re
la
tiv
e	
tr
av
er
sa
l	p
er
fo
rm

an
ce
	(%

)

Diffuse	bounce

Dynamic	ray	fetch	heuristic

Persistent	threads Original Improved



35

Constructing wide BVHs

§ For each node in the binary BVH, starting from 
bottom:

§ Compute optimal SAH cost for subtree, 3 options



36

Constructing wide BVHs

§ For each node in the binary BVH, starting from 
bottom:

§ Compute optimal SAH cost for subtree, 3 options

§ Create leaf



37

Constructing wide BVHs

§ For each node in the binary BVH, starting from 
bottom:

§ Compute optimal SAH cost for subtree, 3 options

§ Create leaf

§ Create internal node



38

Constructing wide BVHs

§ For each node in the binary BVH, starting from 
bottom:

§ Compute optimal SAH cost for subtree, 3 options

§ Create leaf

§ Create internal node

§ Create forest with 2 - 7 roots



39

Constructing wide BVHs

§ For each node in the binary BVH, starting from 
bottom:

§ Compute optimal SAH cost for subtree, 3 options

§ Create leaf

§ Create internal node

§ Create forest with 2 - 7 roots



40

Constructing wide BVHs

§ For each node in the binary BVH, starting from 
bottom:

§ Compute optimal SAH cost for subtree, 3 options

§ Create leaf

§ Create internal node

§ Create forest with 2 - 7 roots

§ Backtrack decisions starting from root and create 
wide nodes so that optimal cost is realized. 


