
Towards an Exapixel per Second:

Enabling Efficient Visual
Data Analysis at Scale

Kayvon Fatahalian
Carnegie Mellon University
(After six years at CMU I will be moving to Stanford in Sept 2017)

Ivan Sutherland’s Sketchpad on MIT TX-2 (1962)

The frame buffer
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)

The frame buffer
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)

Xerox Alto (1973)

TI 74181 ALUBravo (WYSIWYG)

SGI RealityEngine GE8 board (1993)

4.4 Triangle Bus
All graphics architectures that implement parallel primitive pro-
cessing and parallel fragment/pixel processingmust also implement
a crossbar somewhere between the geometry processors and the
framebuffer[5]. While many of the issues concerning the placement
of this crossbar are beyond the scope of this paper, we will men-
tion some of the considerations that resulted in our Triangle Bus
architecture. The RealityEngine Triangle Bus is a crossbar between
the Geometry Engines and the Fragment Generators. Described
in RealityEngine terms, architectures such as the Evans & Suther-
land Freedom SeriesTM implement Geometry Engines and Fragment
Generators in pairs, then switch the resulting fragments to the ap-
propriate Image Engines using a fragment crossbar network. Such
architectures have an advantage in fragment generation efficiency,
due both to the improved locality of the fragments and to only one
Fragment Generator being initialized per primitive. They suffer
in comparison, however, for several reasons. First, transformation
and fragment generation rates are linked, eliminating the possibil-
ity of tuning a machine for unbalanced rendering requirements by
adding transformation or rasterization processors. Second, ultimate
fill rate is limited by the fragment bandwidth, rather than the prim-
itive bandwidth. For all but the smallest triangles the quantity of
data generated by rasterization is much greater than that required
for geometric specification, so this is a significant bottleneck. (See
Appendix 2.) Finally, if primitives must be rendered in the order
that they are specified, load balancing is almost impossible, because
the number of fragments generated by a primitive varies by many
orders of magnitude, and cannot be predicted prior to processor
assignment. Both OpenGL and the core X renderer require such
ordered rendering.
The PixelFlow[6] architecture also pairs Geometry Engines and

FragmentGenerators,but the equivalent of ImageEngines andmem-
ory for a pixel tile are also bundled with each Geome-
try/Fragment pair. The crossbar in this architecture is the composit-
ing tree that funnels the contents of rasterized tiles to a final display
buffer. Because the framebuffer associated with each processor is
smaller than the final display buffer, the final image is assembled as
a sequenceof logical tiles. Efficient operation is achieved
only when each logical tile is rasterized once in its entirety, rather
than being revisited when additional primitives are transformed. To
insure that all primitives that correspond to a logical tile are known,
all primitives must be transformed and sorted before rasterization
can begin. This substantially increases the system’s latency, and
requires that the rendering software support the notion of frame de-
marcation. Neither the core X renderer nor OpenGL support this
notion.

4.5 12-bit Color
Color component resolution was increased from the usual 8 bits to
12 bits for two reasons. First, the RealityEngine framebuffer stores
color components in linear, rather than gamma-corrected, format.
When 8-bit linear intensities are gamma corrected,single bit changes
at low intensities are discernible, resulting in visible banding. The
combination of 12-to-10 bit dithering and 10-bit gamma lookup ta-
bles used at display time eliminates visible banding. Second, it is
intended that images be computed, rather than just stored, in the
RealityEngine framebuffer. Volume rendering using 3D textures,
for example, requires back-to-front composition of multiple slices
through the data set. If the framebuffer resolution is just sufficient to
displayan acceptable image, repeatedcompositionswill degrade the

Figure 6. A scene from a driving simulation running full-screen at
30 Hz.

Figure 7. A 12x magnified subregion of the scene in figure 6. The
sky texture is properly sampled and the silhouettes of the ground
and buildings against the sky are antialiased.

resolution visibly. The 12-bit components allow substantial frame-
buffer composition to take place before artifacts become visible.

Conclusion

The RealityEngine system was designed as a high-end workstation
graphics accelerator with special abilities in image generation and
image processing. This paper has described its architecture and
capabilities in the realm of image generation: 20 to 60 Hz anima-
tions of full-screen, fully-textured, antialiased scenes. (Figures 6
and 7.) The image processing capabilities of the architecture have
not been described at all; they include convolution, color space
conversion, table lookup, histogramming, and a variety of warping
and mapping operations using the texture mapping hardware. Fu-
ture developments will investigate additional advanced rendering
features, while continually reducing the cost of high-performance,
high-quality graphics.

115

Unreal Engine Kite Demo (Epic Games 2015)

Real-time (30 fps) on a NVIDIA Titan X

2B shares per day across Facebook sites
(includes Instagram+WhatsApp) [FB2015]

Youtube 2015: 300 hours per minute
uploaded [Youtube]

80-90% of 2019 internet traffic will
be video [Cisco VNI]

Ubiquitous image sensing and analysis

Analyzing images for robot navigation

Analyzing images for urban efficiency

“Managing urban areas has become one of the most
important development challenges of the 21st
century. Our success or failure in building sustainable
cities will be a major factor in the success of the
post-2015 UN development agenda.”

- UN Dept. of Economic and Social Affairs

Analyzing images for urban efficiency

Use of image analysis to identify:
Dangerous intersections
Infrastructure needing repair
(Pittsburgh potholes!)
Flooding / ice
Air-quality monitoring
…

Analyzing egocentric images to augment humans

What does this say?

What is this?

Gwangjiang Market (Seoul)

The visual data world in 2030
8.5 billion people
(61% urban)
[UN estimate]

70% smartphone
penetration
[Statista, 50% in 2020]

25%
turned on

2 billion cars
[Sperling 2009]

8 cameras/car 25% load
[currently 2%]

1.1B streaming security cameras
Extrapolation from 245M in 2014, 10% annual growth [IHS]

Assume 8K video resolution (33 megapixel)
Total capture capability across the world
~6.5B video streams = 2.1 x 1017 pixels x 30 fps = 6 exapixels/sec

1.5B

4B

Other considerations: home health care robotics, survey science,
infrastructure monitoring…

How do we architect efficient
(and easy to program)

systems for analyzing the
worldwide visual signal?

Challenge: compute-intensive, pixel processing algorithms

FPGA TPU
(ML ASIC)

GPUIntegrated GPU +
media ASIC

Xeon Phi

Need: Efficiently map image analysis algorithms to
(specialized) accelerated computing platforms
(“use every op you can get”)

Challenge: large scale of visual data to acquire, store, and analyze

Need: distributed computing platforms for productive use of
heterogeneous, accelerated computing hardware at datacenter scale

…

Challenge: brute-force nature of many widely used techniques

Need: performance-centric algorithmic innovation

How can systems automatically approximate programs by eliminating
redundancy, using intelligent filtering, inducing sparsity, adaptive
techniques, etc.?

VGG-16
GoogleNet
ResNet-18
MobileNet-224

71.5%
70%
73%

70.5%

138M
6.8M

11.7M
4.2M

15B
1.5B
1.8B
0.6B

[2014]
[2015]
[2016]
[2017]

*

* 10-crop results (ResNet 1-crop results are similar to other DNNs in this table)

ImageNet Top-1
Accuracy Num Params

Cost/image
(MADDs)

Challenge: authoring complex image
analysis applications

How can frameworks encourage desirable program
structure: modules, interfaces, etc. in the context
of end-to-end optimization

What are primitives for analyzing databases of
images, videos, or analyzing scenes?
(“SQL for visual computing?”)

Big visual computing systems needs
1. Techniques for efficiently mapping image analysis

algorithms to accelerated computing platforms
(Efficiently generating kernels for CPUs, GPUs, FPGAs, ASICs)

(Connecting efficient processing pipelines to data stores, distribution across many machines)

(Considering higher-level primitives for authoring future applications e.g., SQL for video DBs?)

2. Distributed computing support for scalable
accelerated computing

4. Good abstractions for authoring scalable visual data
analysis applications

3. Performance-centric algorithmic innovation/approximation
(New work efficient algorithms and approximations)

Motivating question

If I wanted to grab a few terabytes of video, store it in a
database, and perform pixel-level analyses on frames from the
collection using a cluster of high-compute-density nodes, what
system should I use?

72 hours of recording
over nine months:
(Sep 2014 – May 2015)

Google Glass

“KrishnaCam” egocentric video dataset [Singh 2016]

How does the world evolve?
1. Change in
companion

2. Change in object
location (bike rack
moved)

3. Change in object
(different parked cars)

4. Change in season

5. Change in time of day
(lighting conditions)

[Singh 2016]

Life-specific data compression:
KrishnaCam novel data growth 
How much new visual data is observed as recording continues?

[Singh 2016]

Ensemble of face detectors for KrishnaCam

Ensemble of face detectors for KrishnaCam

Sensing human social interactions

CMU Panoptic Studio
480 video cameras (640 x 480 @ 24fps)
147 MPixel video sensor
(3.5 GPixel/sec)

[Joo 2015]

Data from the Panoptic Studio

[Courtesy Yaser Sheikh, Tomas Simon, Hanbyul Joo]

Application: capturing human social interactions
40-second sequence (captured human social interactions)
3D pose reconstruction time: hand-coded solution by grad student — 7 hours on a 4-Titan Xp machine
[Cao 2016]

[Joo et al. 2015]

Cinematography analysis

“Star Wars Episode IV: a New Hope”
Segmented into shot boundaries based on image histograms

Collaboration with Alex Hall, Maneesh Agrawala (Stanford)

What is the average length of shot in a movie?

Does the director favor close ups or wide
shots? How much camera motion is used?

What are the main color palettes in the film?

How do these traits vary across films or time?

Star Wars Ep IV: Sorted by time Sorted by color

Star Wars Ep IV Mean Girls

Workload characteristics

▪ Large video collections (100’s GBs-to-TBs compressed)
- Decompress and deliver pixels efficiently to compute units

▪ Basic data-parallel operations (map, scan), often performed
on sampling of frames
- Analytics-style computations: not tightly coupled, latency sensitive global

communication typical of ML model training

▪ Efficient pixel processing pipelines utilize kernels from
expert-tuned libraries, generated by DSLs
- e.g., Halide, DNN inference using Caffe, OpenCV, MKL
- complex “UDFs” that are already parallelized, run most efficiently on accelerators

Alternatives
▪ Distributed data-analytics frameworks

- [Hadoop, Spark]

▪ Array/raster databases
- [SciDB, RasDaMan, GIS databases]

▪ Distributed machine learning frameworks
- [TensorFlow, MxNet, CNTK]

▪ Emerging closed systems for “vision as a cloud service”
- Google Cloud Vision API
- Microsoft Cognitive Services API
- feature turnkey solutions for object classification, face detection, motion

detection, OCR, stabilization, inappropriate content filtering

Scanner: efficient video analysis at scale

Efficiently delivering video data to GPU/ASIC accelerated
pixel-processing pipelines:

with Alex Poms (CMU), Will Crichton (Stanford), Pat Hanrahan (Stanford)

Design goals / principles
Design principle 1: keep it simple
- Enable non-expert programmers (vision researchers, visual data analysts) to

rapidly develop and deploy video analysis applications at cloud scale

Design principle 2: be efficient
- “Near-HW-peak single-node perf” then scale out
- Utilize heterogenous hardware: ASICs for video encode/decode, run kernels on

multi-core CPUs, GPUs, future DNN accelerators

Non goals:
- Do not be a new kernel description language
- Interoperate with state-of-art 3rd-party kernel libraries and kernel code

generated from existing DSLs

Setup
myvideos/cam000.mp4	
myvideos/cam001.mp4	
myvideos/cam002.mp4	
…	
myvideos/cam479.mp4

I have a list of videos in a directory…

And I have a library of parallel pixel processing kernels for CPUs and GPUs:

Image crop/rescale (Halide)

Optical flow (OpenCV)

Video Tracker (CUDA)

Depth from disparity (Halide)

Eigen (C)

Caffe DNN Eval
NVIDIA cuDNN

Face detection
network

Human Pose
estimation

Object detector

Depth/normal
estimator

…

[Cao16]

[Redmon16]

[Bansal17]

[Hu17]

Represent videos as relations (tables)
myvideos/cam000.mp4	
myvideos/cam001.mp4	
myvideos/cam002.mp4	
…	
myvideos/cam479.mp4

Scanner dataset: capture_session

table: cam000.mp4
frame_id image

table: cam001.mp4
frame_id image

table: cam479.mp4
frame_id image

…

table: cam002.mp4
frame_id image

Ingest into Scanner…

Computations: DAGs of image processing
operations

Pipeline kernels map to heterogeneous resources: CPUs, GPUs, ASICs

......... ...
Image Resize DNN Eval Estimate pose

Halide code Caffe lib C++ code

Resource:
GPU

Resource:
GPU

Resource:
4 CPU cores

640x480
frames

496x368
frames

62x46x15
activations

(x,y) pos for
body parts

Scanner maps pipelines onto a stream of video
frames from tables

Pipeline:

Input: cam_000
id frame

pose_000
id 2dpose

task
Pipeline:
Input: cam_000 [0, 1, 2, 3, ...]
Output: pose_000

0 1 2 3 ...

pose_000
id 2dpose

task
0 1 2 3 ...

pose_000
id 2dpose

task
0 1 2 3 ...

Parallel execution in Scanner

I/O

GPU HW
Decoder

Resize
Instance 0

DNN Eval
Instance 0

Estimate Pose
Instance 0

Node 0: multi-core CPU + GPU

GPU 0

Node 1: multi-core CPU + 2 GPUs

GPU 1

GPU 2

cam000.mp4

I/O

I/O

I/O

I/O

GPU HW
Decoder

Resize
Instance 1

DNN Eval
Instance 1

Estimate Pose
Instance 1I/O

I/O

I/O

GPU HW
Decoder

Resize
Instance 2

DNN Eval
Instance 2

Estimate Pose
Instance 2

A simple Scanner program
db	=	scanner.Database()	
videos	=	os.listdir(‘/myvideos’)	
video_tables	=	db.ingest_videos(videos)	

jobs	=	[]	
for	table	in	video_tables:	

				resized	=	db.ops.Resize(
								frame		=	table.column(‘frame’).all(),	
								width		=	496,	
								height	=	368,	
								device	=	GPU)	

				activations	=	db.ops.DNN(
								frame		=	resized,	
								model		=‘cpm.prototxt’,	
								batch		=	8,	
								device	=	GPU)	

				poses	=	db.ops.PredictPose(
								activations	=	activations,	
								device						=	CPU)	

				jobs.append(Job(columns	=	[poses],	
																					name				=	‘poses’	
																					output_filter	=	stride(2))	

pose_tables	=	db.run(jobs)		

B(8)

Resize

DNN

PredictPose

…
…

…

62x46x15
activations

496x368
frames

640x480
frames

id frame

id poses

…2D body
part positions

impl: Caffe

impl: Halide

impl: C++

 activations = db.ops.DNN(
 frame = resized,
 model = 'cpm.prototxt',
 batch = 8,
 device = GPU)

def detect_poses(frame):
 resized = db.ops.Resize(
 frame = frame,
 width = 496,
 height = 368,
 device = GPU)

 poses = db.ops.PredictPose(
 activations = activations,
 device = CPU)
 return poses

0
1
2
3
4

0
2
4

Scanner data-parallel operators
Map (with element batching) Temporal Stencil

Temporal Stencil + Stride Multi-video Join

Batching frames together during processing
(efficient mini-batch kernels, e.g. DNNs)

(e.g., computing optical flow,
video stabilization/hyperlapse)

Sparse output + stencil
(e.g., optical flow on every 30th frame)

Processing that requires multiple videos
(e.g., depth estimation from disparity)

B(2)

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

1 2 3 4 5

0 3

0 1 3 4

Detector FlowS[0,1]

FlowS[0,1]

Resize

id frame

cam_000_30fps

id frame

cam_001_90fps

0 1 2 3 4 5

Est. Depth

6

6 7

id frame

id poses

id frame

id flow

6

5

id frame

id flow
Stride 3

0 1 2 3 4 5

id depth

Stride 3

B(2)

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

1 2 3 4 5

0 3

0 1 3 4

Detector FlowS[0,1]

FlowS[0,1]

Resize

id frame

cam_000_30fps

id frame

cam_001_90fps

0 1 2 3 4 5

Est. Depth

6

6 7

id frame

id poses

id frame

id flow

6

5

id frame

id flow
Stride 3

0 1 2 3 4 5

id depth

Stride 3

B(2)

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

1 2 3 4 5

0 3

0 1 3 4

Detector FlowS[0,1]

FlowS[0,1]

Resize

id frame

cam_000_30fps

id frame

cam_001_90fps

0 1 2 3 4 5

Est. Depth

6

6 7

id frame

id poses

id frame

id flow

6

5

id frame

id flow
Stride 3

0 1 2 3 4 5

id depth

Stride 3

B(2)

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

1 2 3 4 5

0 3

0 1 3 4

Detector FlowS[0,1]

FlowS[0,1]

Resize

id frame

cam_000_30fps

id frame

cam_001_90fps

0 1 2 3 4 5

Est. Depth

6

6 7

id frame

id poses

id frame

id flow

6

5

id frame

id flow
Stride 3

0 1 2 3 4 5

id depth

Stride 3

Challenges unique to video domain
1. Striding/gathering frames from compressed video streams

2. Temporal dependencies in common video processing operations

(a)

(b)

Figure 5: Object localization using Hand Information. Vi-
sualization of object location probability map (red) and ob-
ject bounding box (green). (a: GTEA, b: Gaze+)

tation to learn the bottom layers of the object localization
network. The intuition behind this training procedure is to
purposefully bias the object localization network to use the
hands as evidence to infer an object bounding box. We first
train a hand segmentation network using the model of [21]
to capture hand appearance information. We then swap out
the top layer for segmentation with a top layer optimized
for object localization (i.e., fine-tune the network to repur-
pose it for object localization). The network has an input
size of K × 3× 256× 256 where K is the batch size. After
five convolutional (conv1− conv5) layers of 2× 2 pooling
operations, the input image dimension is down-sampled to
1/32 of the original size. The final deconvolution layer up-
samples it back to the original size of K×2×256×256. We
use raw images and hand masks provided with GTEA and
Gaze as training data for the hand segmentation network.
Since Gaze+ is not annotated with hand masks, we use [18]
to detect hands and use the result to train the network. Once
the segmentation network is trained, we use manually anno-
tated training images of object locations to re-purpose the
the network for localization. Instead of using raw object
locations (exact center position of the object), we place a
Gaussian bump at the center position to create a heat-map
representation as described in Section 2.1.

Figure 5 shows qualitative results of the localization net-
work. The localization network successfully predicts the
key object of interest out of other irrelevant objects in the
scene. Notice that the result is strongly tied to the hand as
the network is pre-train for hand segmentation. The results
also show that the model can deal seamlessly with different
hand configurations like one-hand or two-hand scenarios.

Recognizing object of interest. The localized object im-
ages are used to train the object CNN. Table 1 compares
the performance of our proposed methods with [5]. Our
proposed method dramatically outperforms [5] by 14%.
As seen in Table 1 the boost in performance can be at-
tributed to improved localization through the use of hand
segmentation-based pre-training.

We visualize the activations of the object recognition net-
work and present two important findings: (1) Hands are
important for object recognition: Although the localiza-
tion network is targeted for object of interest, the cropped
image also contains a large portion of hands. We visual-
ize the activations of the conv5 layer and find that the 50th

Object Recognition GTEA(71) Gaze(40) Gaze+(44)

Fathi et al. [9] 61.36 N/A N/A

Object CNN 67.74 38.05 61.87

Joint training (Ours) 76.15 55.55 74.34

Table 1: Average object recognition accuracy. Proposed
method performs 14% better than the baseline. Joint
training of motion and object networks improves accuracy
across all datasets.

(a)

(b)

Figure 6: (a) Top 5 training images with strongest activa-
tions from the 50th neuron unit in the conv5 layer. (b) 5 test
images (top row) and 13×13 activations (bottom row) of the
same unit. The visualization shows that this unit responds
strongly to hand regions. The object network is capturing
hand appearance.

neuron unit responds particularly strongly to training im-
ages with large hand regions as shown in Figure 6. We fur-
ther test the network with test images shown in Figure 6.
We observe that the strongest activations overlap with hand
regions. We therefore conclude that the object recognition
network is learning appearance features from hand regions
to help recognize objects. When there is no hand in the
scene, the localization network will predict no interacting
object. Since some of the iterating objects as tea bags and
utensils are small, it is extremely challenging to locate them
using an traditional object detector. The hands, their shape
and their motion can act as a type of proxy small objects.
(2) Object attributes are important for object recogni-
tion: Figure 7 shows examples of a particular neuron unit
responding to particular object attributes like color, texture
and shape. In Figure 7b, we observe that this specific neu-
ron is activated when it observes round objects.

3.4. ActionNet performance

We first evaluate the ActionNet to recognize actions.
In our experiments, we crop and resize input images to
256 × 256 and calculate optical flow using OpenCV GPU
implementation of [37]. We clip and normalize the flow val-
ues from [−20, 20] to [0, 255]. We found empirically that
L = 10 optical flow frames generates good performance.

Table 2 compares our proposed method with the baseline
in [5]. While our motion network significantly improves
the average recognition accuracy, we are also interested in
understanding what the network is learning. Our visual-

1899

[Ma 2016]

Object tracking (stateful)

Activity recognition (must observe long sequence of frames)

Choosing a video storage format
16 core Xeon GPU + 1 Titan Xp GPU
1920x1080 video

Eff
ec

tiv
e F

ra
m

e T
hr

ou
gh

pu
t (

fp
s)

CPU JPG decode (19 GB)
CPU-decode-video:
GPU-decode-video:

small-gop (1.2 GB)
small-gop (1.2 GB)

sample + reencode
sample + reencode(1.1 GB)

(1.1 GB)

0

100

1000

1 4 8 16 32 64

Maintain index of keyframe locations to
accelerate parallel decode

frame 0
(keyframe)

byte 0

frame 120
(keyframe)

byte 4840

frame 270
(keyframe)

byte 6796

frame 340
(keyframe)

byte 12480

frame 310
(keyframe)

byte 11284

130 131 192 320

Scanner maintains index of keyframe locations to enable
work-efficient parallel, gathered decode

Importance of well-optimized video decode

Scanner (with keyframe index)
Baseline (off-the-shelf libraries and tools)

Decoded Frame Throughput (1080p)
(Relative to expert hand-tuned implementations)

1

0

0.5

All frames
CPU GPU ASIC CPU CPU CPU

Stride-24 Gather Range

1074 fps 725 fps 49 30 11 7 987 962

GPU ASIC GPU ASIC GPU ASIC

CPU = 16-core CPU
GPU = Titan Xp

Handling temporal dependencies in video processing

Examples of stateful execution:
object tracker carries frame-to-frame state,
activity recognition must observe long sequence of frames

Two-level stream hierarchy: applications partition jobs into“tasks”
(Scanner ensures all elements in task are scheduled serially on same pipeline)

Detector

Tracker

4 5 6

4 5 6

7

7

8 9 10

8 9 10

11

11

0 1 2

0 1 2

3

3

id frame

id flow

12 13 14

12 13 14

15

15

Task 0 Task 1 Task 2 Task 3

…

Job with 4 independent tasks (4 frames/task)

Handling temporal dependencies in video processing
Tasks can receive “warmup” stream elements to initialize state
Pipeline generates no output for these elements.
(redundant computation across tasks to facilitate parallelism)

Intuition for warmup:
When “influence” of state is relatively local in time, warmup allows parallel execution
with little change in output values
e.g. provide task additional 30 frames to initialize object tracker

Detector

Tracker

2 3 4 5 6

4 5 6

2

7

7

6 7 8 9 10

8 9 10

11

11

0 1 2

0 1 2

3

3

id frame

id flow

10 11 12 13 14

12 13 14

15

15

Task 0 Task 1 Task 2 Task 3

…

Job with 4 independent tasks
(task warmup size = 2 frames)

Preliminary results

Single node: scanner has low overhead

Histogram
CPU GPU

Optical Flow DNN EvalGather
CPU GPU CPU GPU GPU

Single Node Throughput:
Relative to Manually Hand-Tuned Implementations

1

0

2

3
Scanner

Baseline

Re
la

tiv
e T

hr
ou

gh
pu

t

Scaling to 2 machines (8 GPUs)

1

0

Histogram
CPU GPU

Optical Flow DNN EvalGather
CPU GPU CPU GPU GPU

2

3

4

5

6

7

8

Scanner

Baseline

Scanner 4 GPU
Scanner 8 GPU

Re
la

tiv
e T

hr
ou

gh
pu

t
5586 fps

424 fps

2520 fps

54 fps

16-core CPU, GPU=Titan Xp

3D human pose reconstruction

Grad student hand-tuned:
Scanner:
Scanner on cluster:

2.6 hrs (1 node x 4 Titan Xp GPUs)
38 mins (4 node x 4 Titan Xp)

 7 hrs (1 node x 4 Titan Xp GPUs)

Approaching viability for extended capture sessions.

Processing 40 seconds of video
from CMU Panoptic studio

Shot segmentation (cinematography analysis)

608 feature length films (2.4 TB)
103M frames
Histogram-based shot segmentation of all films: 4.7 hrs (4 node cluster, 4 GPUs/node)

Facebook Surround 360 VR video generation
(omnidirectional stereo VR video)

2048 x 2048 PointGrey Camera @ 30 FPS

14 cameras
8K x 8K stereo panorama output = 12.5 secs per frame on 32-core CPU

Preliminary Scanner results:
Single node (32-core CPU)
- 5 secs / frame

Multi-node on Google Compute Engine
(8 x 32-core nodes)

- 0.7 secs/frame

Scanner
▪ Open source compute engine for high-performance cluster-

scale video analytics (attacks platform/infrastructure needs)
- Integrates high performance video delivery to heterogeneous

accelerated computing pipelines

▪ Hope: influence design of current future distributed systems
- Spark/Hadoop ecosystem
- APIs for cloud-based video analysis services (Microsoft Cognitive

Services API, Google Cloud vision API, NVIDIA Intelligent Video Analytics)

Ongoing: American TV news analysis
▪ Dataset provided by Internet Archive
▪ 9 months of US election coverage (2012, 2016) on CNN, FOX, MSNBC
▪ 6.6 TB, 18,000 hours of video, 1.5 billion frames

Fareed Zakaria GPS

CNN Newsroom

Situation Room

CNN Newsroom with
Poppy Harlow

The Lead with Jake
Tapper

America News
Headquarters

The Five

The Real Story With
Gretchen Carlson

Shepard Smith Reporting

On the Record With
Brit Hume

Inspiration
Geena Davis Inclusion Quotient (GD-IQ)

- Project between Google and The Geena Davis Institute on Gender in Media
- Uses computer vision to search for gender bias in blockbuster films

Female on-screen time Female speaking time

Image credit: https://www.google.com/intl/en/about/main/gender-equality-films/

Visual data mining process

MTCNN for face detection [Zhang 16]
 “Rude Carnie” DNN for gender ID [Levi 16]

Refine filtering to include only the large faces
detection score > THRESHOLD1 && bbox_area > THRESHOLD2

100 hours (10 hours from each of 10 shows)
Sampled at 2 fps (every 12th frame) - 70K frames

Work by:
M. Perron
W. Crichton
S. Dulloor

Endless opportunities for innovation…
▪ Performance-centric algorithm innovation

- Approximate high-quality detectors with cheaper ones
- Manually via intelligent topology simplification?
- Automatically via replacement or topology search?

- Exploiting temporal coherence
- Use results of prior frames to accelerate future processing

- Multi-resolution and/or adaptive detection techniques
- What are most important frames to pay attention to in 18,000

hours of video?

▪ Future hardware acceleration
- Need for DNN acceleration widely recognized
- ASIC video decoder interfaces might wish to support strided/gathered access

Endless opportunities for innovation…
How to express visual data mining queries?

- What is SQL for video or scenes?

“Three cups to the left of the blue cup” [Ma 17]
count(left(filterbycolor(detect(cup), blue), detect(cup))) == 3

objectsobjects
objects

yes/no
numberobjects

objects

objectsobject

value
objects

number
number

CLEVR	function	catalog

Relate

Equal
Less	/	More

yes/no

Equal yes/no
value
value

Exist
Count

And
Or

Filter	<attr>

objectobjects Unique

In	front	vs.	behind

Sizes,	colors,	shapes,	and	materials

Left	vs.	right

Large	gray
metal
sphere

Large	red
metal	cube

Small	blue
metal	cylinder

Small	green
metal	sphere

Large	brown
rubber
sphere

Large	purple
rubber
cylinder

Small	cyan
rubber
cube

Small	yellow
rubber
sphere

Behind
In	front

Left Right

Filter	
color

Filter	
shape Unique Relate Filter	

shape Unique Query
color

yellow sphere

value

right cube

What	color	is	the	cube	to	the	right	of	the	yellow	sphere?

object Query	<attr> value

Filter	
color Unique Relate

green left

Filter	
size Unique Relate

small in	front

And Count

How	many	cylinders	are	in	front	of	the	small	
thing	and	on	the	left	side	of	the	green	object?

Sample	chain-structured	question:

Sample	tree-structured	question:

object Same	<attr> objects

Filter	
shape

cylinder

Figure 2. A field guide to the CLEVR universe. Left: Shapes, attributes, and spatial relationships. Center: Examples of questions and
their associated functional programs. Right: Catalog of basic functions used to build questions. See Section 3 for details.

ground-truth structures allow us to analyze models based
on, for example: question type, question topology (chain
vs. tree), question length, and various forms of relationships
between objects. Figure 2 gives a brief overview of the main
components of CLEVR, which we describe in detail below.

Objects and relationships. The CLEVR universe con-
tains three object shapes (cube, sphere, and cylinder) that
come in two absolute sizes (small and large), two materi-
als (shiny “metal” and matte “rubber”), and eight colors.
Objects are spatially related via four relationships: “left”,
“right”, “behind”, and “in front”. The semantics of these
prepositions are complex and depend not only on relative
object positions but also on camera viewpoint and context.
We found that generating questions that invoke spatial rela-
tionships with semantic accord was difficult. Instead we
rely on a simple and unambiguous definition: projecting
the camera viewpoint vector onto the ground plane defines
the “behind” vector, and one object is behind another if
its ground-plane position is further along the “behind” vec-
tor. The other relationships are similarly defined. Figure 2
(left) illustrates the objects, attributes, and spatial relation-
ships in CLEVR. The CLEVR universe also includes one
non-spatial relationship type that we refer to as the same-
attribute relation. Two objects are in this relationship if
they have equal attribute values for a specified attribute.

Scene representation. Scenes are represented as collec-
tions of objects annotated with shape, size, color, material,
and position on the ground-plane. A scene can also be rep-
resented by a scene graph [17, 21], where nodes are objects
annotated with attributes and edges connect spatially related

objects. A scene graph contains all ground-truth informa-
tion for an image and could be used to replace the vision
component of a VQA system with perfect sight.

Image generation. CLEVR images are generated by ran-
domly sampling a scene graph and rendering it using
Blender [6]. Every scene contains between three and ten
objects with random shapes, sizes, materials, colors, and
positions. When placing objects we ensure that no objects
intersect, that all objects are at least partially visible, and
that there are small horizontal and vertical margins between
the image-plane centers of each pair of objects; this helps
reduce ambiguity in spatial relationships. In each image the
positions of the lights and camera are randomly jittered.

Question representation. Each question in CLEVR is as-
sociated with a functional program that can be executed on
an image’s scene graph, yielding the answer to the question.
Functional programs are built from simple basic functions
that correspond to elementary operations of visual reason-
ing such as querying object attributes, counting sets of ob-
jects, or comparing values. As shown in Figure 2, complex
questions can be represented by compositions of these sim-
ple building blocks. Full details about each basic function
can be found in the supplementary material.

As we will see in Section 4, representing questions as
functional programs enables rich analysis that would be
impossible with natural-language questions. A question’s
functional program tells us exactly which reasoning abili-
ties are required to solve it, allowing us to compare perfor-
mance on questions requiring different types of reasoning.

3

AI for visual
reasoning
CLEVR
[Johnson 17]

CMU urban video analytics testbed
+ Streamer

CMU urban video analytics testbed
Deployment of high-resolution cameras and edge compute nodes on campus at
CMU and across a new city blocks nearby campus

Industrial computer
vision cameras
(emits RAW pixels)

Compute node

More details at:
urbanvideo.cs.cmu.edu

Video analytics node

Significant compute
capability on the
near-camera node

Intel NUC /
NVIDIA Tegra X1

1-2 TFLOPs of image
processing hardware
per node

Wi-fi antenna

PoE Gigabit ethernet switch
(power/data to cameras)

Cameras

Max resolution: 2.4 MPixel
Up to 60 fps
Emits RAW pixels (uncompressed video signal)

Inside windows

One Intel NUC per camera
Intel Gen 9 Integrated graphics + media decode

Year 1 (~end of 2017)

Urban video analytics testbed goals

▪ Be a “living laboratory” for research in cloud-to-edge systems,
computer vision, security, privacy, urban computing
- Provide open platform for deploying streaming applications at scale
- Facilitate easy deployment of applications to 10’s-100’s of cameras

▪ Tackle issues of privacy and policy head on
- Start with small deployment, then grow
- One output of project will be policy and technology guidelines for

responsible capture, use, and retention of urban video data

Urban video analytics testbed: use cases
TRANSPORTATION / CITY DYNAMICS

Vehicle/pedestrian/bicyclist trajectories

Notable “event” counting: bike near bus, near collisions,
pedestrian unexpectedly entering street

Detailed statistics of human and vehicle behavior at
intersections (for autonomous vehicle development and
training)

External validation of autonomous vehicle positioning/
decision making

CLIMATE / ENVIRONMENTAL MONITORING
Air-quality estimation from video data

Per-vehicle pollution estimation
(based on analysis of exhaust)

Frozen road detection

PUBLIC SAFETY
Students opt-in to automated tracking when
walking home at night

NEW COMPRESSION TECHNIQUES

“Smart camera” that learns a viewpoint-specific
compression scheme (reduce network requirements)

Compression for machines, not humans: preserve
information needed for analysis tasks (rather than
preserve image details that are salient to human eye)

Video anonymization (cameras never output original
images, but anonymized images)

Which analysis applications can remain effective while
being performed on anonymized video sources?

PRIVACY

Example: air-quality analysis
▪ Computer vision collaborators are

interested if they can attribute pollution
to individual vehicles
- Large trucks, buses, trains, etc…

▪ Requires 24-7 recording at low frame rate

▪ Jump to high frame-rate resolution when
potential polluter detected

▪ Capture setup: two time synced 12.4
Mpixel cameras emitting 12-bit RAW
- Two cameras per NUC

“Streamer” software platform
Dataflow-based edge-to-cloud real-time video processing framework
Open source software infrastructure for CMU Visual Analytics testbed

Intel QuickSync
HW Decoder

Gen 9 CPU
(Iris Pro 580)

CPU core CPU core CPU core CPU core

RAW pixels or
H.264 encoded video

Camera

Intel i7-6770HQ (Skull Canyon NUC)

(TensorFlow / Caffe)

Servers in CMU datacenter
Work by:
Andersen
Canel
Kaminsky
Jiang
Xian

Camera fps
exposure control
region of interest

control

Streamer pipeline

Crop + resize Train detect
DNN

Database entry
for frame

Store RAW frame
to disk

filesystem

SQL database

▪ Specifies both image processing logic and perform dynamic
control of camera capture setting control

▪ Streamer architecture questions:
- What can be learned from design of GCam computational

photography pipelines?

▪ Streaming implementation questions:
- Many of the same algorithmic opportunities as Scanner apps (what frames to pay

attention to? How to exploit temporal context?)
- New forms of video compression: Learn camera-viewpoint specific compression?
- Edge-to-cloud scheduling: What decisions should be made automatically by the

system and which decisions must be made by the programmer?

Big visual computing systems needs
1. Techniques for efficiently mapping image analysis

algorithms to accelerated computing platforms
(Efficiently generating kernels for CPUs, GPUs, FPGAs, ASICs)

(Connecting efficient processing pipelines to data stores, distribution across many machines)

(Considering higher-level primitives for authoring future applications e.g., SQL for video DBs?)

2. Distributed computing support for scalable
accelerated computing

4. Good abstractions for authoring scalable visual data
analysis applications

3. Performance-centric algorithmic innovation/approximation
(New work efficient algorithms and approximations)

Scheduling image analysis pipelines

with Ravi Mullapudi (CMU), Andrew Adams (Google), Dillon Sharlet (Google), Jonathan Ragan-Kelley (Stanford)

Generating efficient pixel-processing code for CPUs/GPUs/accelerators:

Code generation for deep learning

Graph Compiler

Google XLA

Trend: new compiler intermediate representations (IR) for optimization of
deep learning data flow graphs

NNVM / TVM

Real-world computational photography
pipelines are complex dataflow graphs

Local Laplacian filter
[Paris 2010, Aubry 2011]

Google Nexus HDR+ mode: over 2000 stages!

100 stages

Halide DSL

blurx(x,y)	=	(in(x-1,y)				+	in(x,y)				+	in(x+1,y))				/	3;	
out(x,y)			=	(blurx(x,y-1)	+	blurx(x,y)	+	blurx(x,y+1))	/	3;

Raised level of abstraction for developing high-performance image
processing algorithms

in blurx out

[Ragan-Kelley, Adams et al. 2012]

Halide DSL

Schedule: DSL for mapping pipeline stages to a parallel machine

output.tile(x,	y,	xi,	yi,	256,	32);	

output.vectorize(xi,	8);	
output.parallelize(y);	

blurx.compute_at(xi);	
blurx.vectorize(x,	8);

Raised level of abstraction for developing high-performance image
processing algorithms

compute output in tiled order

vectorize innermost loop
parallelize loop across cores
loop fusion
vectorize innermost loop

blurx(x,y)	=	(in(x-1,y)				+	in(x,y)				+	in(x+1,y))				/	3;	
out(x,y)			=	(blurx(x,y-1)	+	blurx(x,y)	+	blurx(x,y+1))	/	3;

Functional pipeline description:

[Ragan-Kelley, Adams et al. 2012]

BA
C

D
Ein

Output: optimized schedule

for each 8x128 tile in parallel
 vectorize compute required pixels of A
 unroll x by 4
 vectorize compute required pixels of B
 vectorize compute pixels in tile of D

for each 8x8 tile in parallel
 vectorize compute required pixels of C
 unroll y by 2
 vectorize compute pixels in tile of EA, B C, D, E

Tile size: 8 x 128 Tile size: 8 x 8

in

Halide Autoscheduler

Input: Halide program DAG

[Mullapudi 2016]

Automatically scheduling Halide

Autoscheduled Halide performs now
comparably to experts

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

0.5 1 1.5

Auto scheduler

Performance relative to expert schedules
(6-core Xeon CPU)

On 8 of the 14 benchmarks
performance within 10% of
experts or better

[Mullapudi 2016]

Autoscheduler saves time for experts

0 10 20 30 40 500 10 20 30 40 50

0 10 20 30 40 500 10 20 30 40 50

Auto scheduler
Dillon
Andrew

Time (min)

Th
ro

ug
hp

ut

0 30 60 90 1200 30 60 90 120

Th
ro

ug
hp

ut

Time (min)

Time (min)

Th
ro

ug
hp

ut

Max filter

Non-local means denoising Lens blur

[Mullapudi 2016]

What can we contribute to scheduling DNN
frameworks?

▪ New challenges that do not exist in Halide:
- Stateful computation (recurrent networks)
- Data-dependent execution
- Auto-differentiation service
- Expect diversity in DNN hardware accelerators

Graph Compiler

Google XLA
NNVM / TVM

How do we create flexible,
high-efficiency systems

for analyzing the world’s visual signal?

Rich space of high-impact applications
(space is being defined as we go!)

Applications convert new performance into new value
Use every flop systems can provide!

CPUs, GPUs, ASICs…

Large opportunities for performance-minded algorithm design
(orders of magnitude available)

In addition to huge body of fundamental computer vision/AI/ML algorithms work
to solve problems previously not solvable

Familiar need for domain-specific programming abstractions to
impose useful structure (for productivity and performance)

Thank you
Collaborators:

Alex Poms
Ravi Mullapudi
Krishna Kumar Singh
Karima Ma
Ran Xian
Satya Tangirala
Christopher Canel
Angela Jiang
Tomas Kim
Hanbyul Joo
Dave Andersen
Srinivas Narasimhan
Yaser Sheikh
(CMU)

Will Crichton, Jonathan Ragan-Kelley,
Maneesh Agrawala, Pat Hanrahan (Stanford)
Alyosha Efros (Berkeley)
Andrew Adams, Dillon Sharlet, Bill Mark (Google)
Matt Perron, Dulloor Subramanya, Michael Kaminsky (Intel)

Support:
Intel Science and Technology Center for Visual Cloud Systems (ISTC-VCS)
Intel VEC, ML ISRAs
National Science Foundation
Google Faculty Fellowship
Heinz Foundation

