Local Shading Coherence Extraction for
SIMD-Efficient Path Tracing on CPUs

Attila Afra, Carsten Benthin, Ingo Wald, Jacob Munkberg

Intel Corporation

qall

Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others. See for full list of Intel trademarks.

~ imm

http://www.intel.com/sites/corporate/tradmarx.htm

Path tracing

» Standard method for production rendering

= Main steps:
= Ray traversal
» Shading

— Usually more than half
of the rendering time

© 2016 Intel Corporation

Path tracing

» Single-ray tracing
= SIMD single-ray traversal

= Scalar shading

» Packet tracing

= SIMD single-ray traversal (or packet traversal)
* SoA-based SIMD packet shading

© 2016 Intel Corporation

Path tracing

= Random rays - incoherent traversal and shading ®

= Low utilization of vector units

— The wide (8-32) vector units of modern CPUs and GPUs are wasted

» Incoherent memory accesses

© 2016 Intel Corporation

Incoherent shading

= SIMD divergence
= Many different shaders are evaluated within a SIMD batch

= Low SIMD utilization

o[1]2]3]|4]|5|6|7|)

» |Incoherent texture access

» Non-cached reads form memory, disk, or network

© 2016 Intel Corporation

Coherence extraction

» Performance can be improved by extracting coherence

» Find batches of similar rays and process them together

= Most previous research focused on traversal

= Stream shading

» Trace streams of rays and sort them on various criteria (e.g., material)

» Previous methods operate on a single large, global stream (millions of rays):
= Wavefront path tracing on GPUs [Laine et al. 2013]
» Sorted deferred shading for production path tracing [Eisenacher et al. 2013]

© 2016 Intel Corporation

Our algorithm

* Traces and sorts small local streams independently on each CPU thread

= 2K-8K rays per stream

» Enables efficient SIMD shading with low overhead

= Why local?
= Has much lower overhead than global!
» Cache-friendly: the streams fit into the CPU'’s last-level cache (LLC)

Avoids expensive cross-core communication

Very fast (and simple) ray sorting
Sufficient for high (> 90%) SIMD utilization

© 2016 Intel Corporation

Path tracing integrator

» Unidirectional path tracer with next event estimation

» Cast a ray from the camera vAg
<p<v)Ql>
» Evaluate the material at the hit point
= Material ID '

= Material shader which constructs a BSDF
= Cast a shadow ray toward a light source

= Cast an extension ray and repeat

© 2016 Intel Corporation

Stream tracing

" Two ray streams:
= Extension ray stream

= Shadow ray stream

= SOA memory layout
= SIMD-friendly

» Compact

= No gaps (inactive rays)

= Algorithm consists of stages

= Each stage involves a stream iteration

© 2016 Intel Corporation

Ray generation

Ray intersection

Sorting

Material evaluation

Shadow ray intersection

Accumulation

Stream tracing

= Ray generation Ray generation

= Generate primary rays from an image tile

— e.g.,, 16x16 pixels, 8 samples per pixel Ray intersection

Sorting

Material evaluation

Shadow ray intersection

Accumulation

© 2016 Intel Corporation

Stream tracing

= Ray generation Ray generation

= Generate primary rays from an image tile

— e.g., 16x16 pixels, 8 samples per pixel Ray intersection

Sorting

= Ray intersection
» [ntersect all extension rays in the stream Material evaluation
= Single-ray traversal

» Stream traversal Shadow ray intersection
— DRST [Barringer & Akenine-Moller 2014]
— ORST [Fuetterling et al. 2015] Accumulation

© 2016 Intel Corporation

Stream tracing

= Sorting
= Sort ray IDs by material ID

= Counting sort - fast!

Ray generation

Ray intersection

Sorting

Material evaluation

Shadow ray intersection

Accumulation

© 2016 Intel Corporation

Stream tracing

= Sorting
= Sort ray IDs by material ID

= Counting sort - fast!

= Material evaluation
= |terate over the sorted ray IDs
» Execute shaders for coherent SIMD batches
= Generate extension and shadow rays

» Append to new streams using pack-stores
— Filter out terminated paths
— Double buffering

© 2016 Intel Corporation

Ray generation

Ray intersection

Sorting

Material evaluation

Shadow ray intersection

Accumulation

Stream tracing

= Shadow ray intersection Ray generation

= Test all shadow rays for occlusion
Ray intersection

Sorting

Material evaluation

Shadow ray intersection

Accumulation

© 2016 Intel Corporation

Stream tracing

= Shadow ray intersection Ray generation

= Test all shadow rays for occlusion
Ray intersection

= Accumulation

Sorting

* For unoccluded shadow rays, add direct light

= For terminated paths, accumulate to image Material evaluation

Shadow ray intersection

Accumulation

© 2016 Intel Corporation

Stream tracing

» Shadow ray intersection

= Test all shadow rays for occlusion

= Accumulation
* For unoccluded shadow rays, add direct light

» For terminated paths, accumulate to image

» Path regeneration (optional)

= Append new primary rays to the stream

— Replace terminated paths

Ray generation

Ray intersection

Sorting

Material evaluation

Shadow ray intersection

Accumulation

© 2016 Intel Corporation

SIMD stream shading example

SortedrayIDarray: |0 |4 (11|12 (6|9 |15/5(10|12|13(3 |7 |8 (14

Inputarray: [O |1 (23 [4([5[6]|7[8|9|10]11|12]|13|14|15]«

sJajjng a)gnoq

Outputarray: |0 [4 |11

intel. | 17
© 2016 Intel Corporation LJ

SIMD stream shading example

—B
SortedrayIDarray: |O |4 (11112 (6|9 |15/5(10|12|13(3 |7 |8 (14

Inputarray: [O |1 (23 [4([5[6]|7[8|9|10]11|12]|13|14|15]«

sJajjng a)gnoq

Outputarray: |0 [4 |11

intel. | 18
© 2016 Intel Corporation LJ

SIMD stream shading example

Sorted ray ID array:

Input array:

Output array:

© 2016 Intel Corporation

—
4 (111 1(216]9|15]/5(10]12{13(3 |7 (8|14
11213(4[|5|6(7[8]|9|10(11|12(13|14|15]«

sJajjng a)gnoq

SIMD stream shading example

© 2016 Intel Corporation

Sorted ray ID array:

Input array:

SIMD register:

Output array:

—
4 (111 1(216]9|15]/5(10]12{13(3 |7 (8|14
11213(4[|5|6(7[8]|9|10(11|12(13|14|15]«

sJajjng a)gnoq

SIMD stream shading example

© 2016 Intel Corporation

Sorted ray ID array:

Input array:

SIMD register:

Output array:

3
O(4|11]|112|6|9([15[5(10]|12|13|3 |7 |8 |14
0(112|3|4|5([6|7]|8]|9([10(11|12|13]|14(15(«
/o
Gather
; /

1121619

¥

0|4]|11

sJajjng a)gnoq

SIMD stream shading example

—B
SortedrayIDarray: |O |4 (11112 (6|9 |15/5(10|12|13(3 |7 |8 (14
Input array: | O 2(314|5|6|7[8([9(10(11|12|13|14|15]«

1
/
Gather///
/[J/

SIMD register: | 1 | 2 9

O

SIMD register: |12 |6 |9 2
o o

Shading i

L g

o

w

Outputarray: |0 [4 |11

© 2016 Intel Corporation

SIMD stream shading example

—B
SortedrayIDarray: |O |4 (11112 (6|9 |15/5(10|12|13(3 |7 |8 (14
Input array: | O 2(314|5|6|7[8([9(10(11|12|13|14|15]«

1
/
Gather///
/[J/

SIMD register: | 1 | 2 9

on \
Pack-store
~O\ ¥

Outputarray: |04 |11]1(2]9

O

SIMD register: |12 |6 |9 2
o o

Shading i

L g

o

w

© 2016 Intel Corporation

Results

» Stream tracing (Our)
= Stream size: 2K rays (376 KB/thread)

» Single-ray tracing w/ scalar shading

» Packet tracing w/ SIMD shading

= Same SIMD single-ray traversal kernel
= 8-wide SIMD, AVX2 instruction set

= Hardware: dual-socket Xeon E5-2699 v3
= 36 cores, 72 threads, 90 MB LLC (30% used for streams)

intel' | 24
© 2016 Intel Corporation

Test scenes

oot ‘“W N o ‘?
Q,% \ / <.>\¢ z) °$:
v <385\
: : \ e)i B/.\q
Conference / 36 materlals Dragon / 5 materials
complex procedural shaders simple shaders

© 2016 Intel Corporation

Path tracing performance (Mray/s)

120
100
80
0 m Single
>
T %0 B Packet
s acke
& Our
40
20 -
0
Art Deco Mazda Villa Conference Dragon
intel) 26
© 2016 Intel Corporation L_d ‘

Path tracing performance (Mray/s)

120

100

m Single

3x speedup
1

B Packet

N

W Our
40 -

20 -

Art Deco Mazda Villa Conference Dragon

SIMD utilization for shading (%)

100

90

80

70

60

m Single

50
B Packet

40 & Our

SIMD utilization (%)

30

20 -

10 -

O -
Art Deco Mazda Villa Conference Dragon

© 2016 Intel Corporation

Rendering time breakdown

100

90

80

70

60
I Unaccounted

50)
W Sorting

40 i Shading

Normalized time

30 M Traversal
20

10

0

Packet Our Packet Our Packet Our Packet Our Packet Our

Art Deco Mazda Villa Conference Dragon

© 2016 Intel Corporation

SIMD utilization vs. stream size

100
. W
&0 AT
o .
60 //:// —e—Art Deco
50 / Mazda
40 —o—Villa

30 / —e—Conference
/ —e—Dragon
20

10

SIMD utilization (%)

0
8 32 128 512 2048 8192 32768

Stream size

© 2016 Intel Corporation

Conclusion

= Achieves much higher SIMD utilization than single-ray and packet shading
= Reduces shading time by 2-3 X for complex scenes with hundreds of shaders
» Could perform even better with production-quality shaders

» Scales well to hundreds of CPU cores, wider SIMD (16), and bigger caches

= Future work:
= Additional sorting steps (e.g., textures)

» Bidirectional path tracing

intel' | 31
© 2016 Intel Corporation

Questions?

© 2016 Intel Corporation

SIMD utilization vs. number of materials

100 e o @

90

"N
A —

\ —o—Packet
50
\ Stream 2K

40 —o—Stream 8K
30 —o—Stream 32K
20

10

SIMD utilization (%)

2 4 8 16 32 64 128 256 512 1024
Number of materials

© 2016 Intel Corporation

