Masked Software Occlusion Culling

Jon Hasselgren
Magnus Andersson
Tomas Akenine-Maller

Background

¢ Potentially Visible Sets
- Precomputed - very efficient
- Scene (occluders) must be static
- Difficult to handle general scenes

Half-Life 2

2/47

Background

¢ Dynamic occlusion culling increasingly popular
- Modern games have more complex and dynamic worlds
- Simpler content pipeline, no complex pre-computation

Battlefield 4 Assasin's Creed Unity

3/47

Dynamic Occlusion Culling

e Hardware occlusion queries
- GPU is extremely efficient at rasterization
- Long pipeline delay, takes long to get the result of a query
- May require sending result back to CPU

e Software occlusion culling
- Short delay, no readback - easier to integrate with scene traversal
- Software rasterization not as efficient as GPU

a/a7

Hierarchical Z Buffer (HiZ) [Greene93]

e Rasterize occluders to full resolution z buffer

5/47

Hierarchical Z Buffer (HiZ) [Greene93]

e Rasterize occluders to full resolution z buffer

¢ Create hierarchical z buffer
- Find the maximum z in each 8x8 tile

6/47

Hierarchical Z Buffer (HiZ) [Greene93]

e Rasterize occluders to full resolution z buffer

¢ Create hierarchical z buffer
- Find the maximum z in each 8x8 tile

e Perform occlusion queries with hierarchical z buffer

7/47

Masked Depth Culling [AHAM15]

/47

Masked Depth Culling [AHAM15]

/47

Hierarchical Z buffer
[Greene93]

Masked depth buffer
[AHAM15]

Depth buffer

HiZ buffer

Depth buffer

Masked HiZ buffer

Not needed

Masked Depth Culling [AHAM15]

Depth buffer HiZ buffer

Hierarchical Z buffer
[Greene93]

Depth buffer Masked HiZ buffer

Not needed

Masked depth buffer
[AHAM15]

/47

Masked Depth Culling [AHAM15]

Depth buffer HiZ buffer

Hierarchical Z buffer
[Greene93]

Depth buffer Masked HiZ buffer

Not needed

Masked depth buffer
[AHAM15]

/47

Masked Software Occlusion Culling

¢ Masked Depth Culling [AHAM15]

- Was originally intended for graphics hardware
- Directly update hierarchical z buffer without computing full res z buffer
- Decouples coverage sampling (rasterization) and depth computation

¢ Could it be really fast for software?
- Much less memory to read/write than full resolution z buffer
- Updates use bitmasks, can process 256 pixels in parallel using AVX

9/47

Algorithm

10/47

Compute Bounding Box

e Padded to 32x8 pixel supertiles

12/47

Traverse Supertiles

13/47

Traverse Supertiles

C_ 1T T T T T T T
AVX register

14/47

AVX Register Layout

¢ One Scanline per SIMD-lane

AVX register

15/47

Edge Slopes

e Compute slopes (Ay/Ax) during triangle setup
- Similar to regular scanline rasterizers
- Some precision caveats due to tile size

16/47

Compute Break Points

e Compute break point for each scanline
- Eight scanlines in parallel using AVX

4

[0 [10 | 11 | 11 | 11 | 12 | 12 | 13 |

Breakpoints

17/47

Compute Coverage Mask

e Start with full coverage mask

Coverage mask

18/47

[0 [10 | 11 | 11 | 11 | 12 | 12 | 13 |

Breakpoints

Compute Coverage Mask

e Start with full coverage mask
- Shift each lane (scan line) to break point
- AVX2 and later support per-lane shift

Coverage mask

[0 [10 | 11 | 11 | 11 | 12 | 12 | 13 |

Breakpoints

19/47

Repeat for Next Edge

¢ Repeat the same process for next edge

Coverage mask

[6 [10 | 13 | 17 | 20 | 24 | 28 | 31 |

Breakpoints

20/47

Repeat for Next Edge

¢ Repeat the same process for next edge
- Edge is facing right - invert mask

Coverage mask

[6 [10 | 13 | 17 | 20 | 24 | 28 | 31 |

Breakpoints

21/47

Combine Masks

e Combine mask of all overlapping edges

Coverage mask

22/47

Combine Masks

e Combine mask of all overlapping edges
- Using bitwise AND

Coverage mask

23/47

Resulting Coverage Mask

e Combine mask of all overlapping edges
- Using bitwise AND

Coverage mask

g |

24/47

Shuffle mask

¢ Shuffle mask to form better shaped tiles
- Before: each SIMD-lane is a scanline

Coverage mask

B N 2000
AVX register

25/47

Shuffle mask

e Shuffle mask to form better shaped tiles
- Before: each SIMD-lane is a scanline
- After: each SIMD-lane is a 8x4 tile

Coverage mask

B N 2000
AVX register

26/47

Masked Depth Buffer Update

e Masked z update similar to previous work [AHAM15]

- Optimized for AVX and software implementation
- Less accurate than original, more dependent on render order
- Easier to control render order than for HW culling

e Input for an 8x4 tile
- Tri: Coverage mask (32b) + Zmax value (32b float)
- Buffer: Selection mask (32b) + 2 Zmax values (2x32b float)

(]

) ;

g Z:‘i’m.\' = . {US]

‘=

=

Lo

O 7V = (09

t zfm.r.l ()

A Zpax =M 0.75)
30/47

Masked Depth Buffer Update

1 .
® Zuxis the working layer
- Updated as: max (Z,',,‘,..Zf,ﬁ;’;.l)
- Mask is updated using bitwise or

e 7.. is the reference layer
- Whenever working layer mask is full, overwrite reference layer

- Clear working layer

Rasterized triangle Buffer entry Updated Buffer entry
Zimi= 0.5 Z0=M 09) 2 = (09)
Zpmax= M 0.75) Z)= W ©.75)

33/47

Update Heuristic Results

¢ Silhouettes can leak through geometry
- Reason: partial working layer contaminates foreground layer,
which would otherwise completely overwrite the tile

Revised Update

¢ Discard working layer if drawing a new object
- Throw away partial data avoid contaminating layers in front
- How to know if we begin drawing a new object?

¢ Discard heuristic
= If Zﬁ&m.‘r'z:;r‘:.u‘>Zf:m.\‘-zr]am.t ’ discard Working |a\/er
- Avoids fixed threshold value

Rasterized triangle Buffer entry Updated Buffer entry
Z:ithH = {US] er]u.r.r - ({],*}} Zfr]m.l' o [(),'-))
Zpmax= M 0.75) Znaxr=05)

37/47

Update Heuristic Results

No discard Discard heuristic

38/47

Results

39/47

Results
Intel Occlusion Culling Sample

¢ Integrated in Intel occlusion culling sample
- Uses low-poly occluder meshes
- Two pass occlusion culling (rasterize occluders, perform queries)
- Contains an AVX2 optimized version of the HiZ algorithm
- Integrated our algorithm making minimal changes

40/47

Results
Intel Occlusion Culling Sample

¢ Algorithm timing breakdown
- Clear: Clearing the depth buffer
- Geom: Transform & project geometry
- Rast: Triangle setup & occluder rasterization
- Gen: Compute hierarchical z buffer from full resolution z buffer
- Test: Perform occlusion queries

Clear| Geom | Rast Gen| Test Total

HiZ 377 196 |2145 509 278 3505

Mask 23 194 584 0 255 1056
16x 3.7x

a41/47

Results
Intel Occlusion Culling Sample

¢ Performance comparison for camera animation

i

Time (ms)

-
- -
- -
. e mm === bl
- - e =

Frame Nurﬁber

— Frustum HiZ — Mask

42/47

Results
Standalone framework

¢ Standalone engine tailored for our algorithm
- One pass: interleaving occluder rasterization and occlusion queries
- Early exit: don't perform occlusion culling in occluded regions
- Modified version of the hierarchical z buffer (HizZ) algorithm

MPI Informatics Building
Mesh: 72 MTris, Occluder: 143 KTris Mesh: 7 MTris, Occluder: 7 MTris

a43/47

Results
MPI Informatics Building

¢ Performance during camera flythrough

0 Occlusion Culling Time (CPU)

60 Total Frame Time (CPU & GPU)

/'V —
A VA

Frame Number

10 Mﬂ"”‘\,\/

Frame Number

— Frustum —— HiZ — Maskl

a4/47

Rungholt

e Live demo

Conclusion

e Efficient algorithm for rasterizing occlusion buffers
- More than 3x better performance than previous work
- Can be integrated tightly with traversal algorithm (low latency)
- Very accurate culls 98% of all triangles culled by hierarchical z buffer

e Future work
- Efficient multi-threading
- Better update heuristics for masked z buffer
- GPU implementation

46/47

Thank you

e Source code available
- www.github.com/GameTechDev/MaskedOcclusionCulling

e Questions

a47/47

