

Stack
addr(3)
-addr(5)-

Bit Trail
1
1
0
0
0

	Stack	Stackless, Backtracking from root	Stackless, Backtracking with parents/siblings
state for book keeping (per ray)	∅(h(tree))	⊘ (1)	⊘ (1)
backtracking effort	€(1)	€(h(tree))	∅(h(tree))

Bit Trail
1
1
0
0
0

Cur Key
1
0
0
1
1
0

Bit Trail	
1	
1	
,o′	
,ø′	
,0′	

Cur Key
1
0
0
×
×
0

Building block 1: Using a bit trail, go to nth uncle in constant time

Perfect Hash Map h: node key $k \mapsto$ node address addr(k)

- properties
 - no collisionsno need to store keys
 - lookup in constant time

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

 $S = \{1, 2, 3, 4, 5, 8, 9, 18, 19, 38, 39\}$

|S| = 11

 $|T| = 11 = |S| \Rightarrow \text{minimal perfect hash table}$

|D| = 8

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

[Fox, Heath, Chen, and Daoud 1992]

 $|T| = 11 = |S| \Rightarrow \text{minimal perfect hash table}$

|D| = 8

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

$$|T| = 11 = |S| \Rightarrow \text{minimal perfect hash table}$$

$$|D| = 8$$

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

$$|T| = 11 = |S| \Rightarrow \text{minimal perfect hash table}$$

$$|D| = 8$$

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

|D| = 8

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

[Fox, Heath, Chen, and Daoud 1992]

 $|T| = 11 = |S| \Rightarrow$ minimal perfect hash table

|D| = 8

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

|D| = 8

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

|D| = 8

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

Building block 2: Two level hashing using an additional displacement table D

$$k \mapsto (k \mod |T| + D[k \mod |D|]) \mod |T|$$

[Tarjan, Yao 1979]

Greedy resolution in decreasing number of dependencies

[Fox, Heath, Chen, and Daoud 1992]

Building block 3: Reducing the number of hash lookups

backtracking statistics

- to grand uncle: 15%

- to sibling: 27% around 57% alltogether - to uncle: 15%

Building block 3: Reducing the number of hash lookups

backtracking statistics

```
to sibling: 27%
to uncle: 15%
to grand uncle: 15%

around 57% alltogether
```

- store references to uncle and grand uncle in node
 - in unused padding space
 - data loaded anyway

Building block 3: Reducing the number of hash lookups

backtracking statistics

```
to sibling: 27%
to uncle: 15%
around 57% alltogether
to grand uncle: 15%
```

- store references to uncle and grand uncle in node
 - in unused padding space
 - data loaded anyway
- store most recently postponed node in a register
 - always used for transitions to siblings
 - similar to a short stack, but more powerful

- subtrees behind intersection may not always be culled
 - due to overlapping bounding boxes

- subtrees behind intersection may not always be culled
 - due to overlapping bounding boxes
- discard levels with disjoint t-intervals

- subtrees behind intersection may not always be culled
 - due to overlapping bounding boxes
- discard levels with disjoint t-intervals
 - cheap
 - · no to values stored
 - · mask with one bit per level
 - · bit set to one if overlapping, zero if disjoint
 - · bitwise and with bit trail after intersection has been found

- subtrees behind intersection may not always be culled
 - due to overlapping bounding boxes
- discard levels with disjoint t-intervals
 - cheap
 - · no to values stored
 - · mask with one bit per level
 - · bit set to one if overlapping, zero if disjoint
 - · bitwise and with bit trail after intersection has been found
 - compromise
 - · cannot account for intersections outside overlap

Building block 5: Resuming traversal in last node node instead of starting at the root

- pause: state (key and bit trail) must be stored
- resume: start in last node, set bit trail to
 - previous bit trail if same ray origin and direction
 - · transparent/translucent object, cut outs
 - 1 for all levels above current level if ray origin or direction has changed
 - · tracing paths
 - refraction

- optimized stackless traversal
 - backtracking in constant time by perfect hashing
 - reduced number of hash lookups
 - · store references to uncles and grand uncles in nodes
 - · store most recently postponed node in a register

- optimized stackless traversal
 - backtracking in constant time by perfect hashing
 - reduced number of hash lookups
 - · store references to uncles and grand uncles in nodes
 - · store most recently postponed node in a register
- additional building blocks currently not used in software (e.g. due to register pressure)
 - discard unreachable postponed nodes
 - pause and resume traversal in current node

Summary

- optimized stackless traversal
 - backtracking in constant time by perfect hashing
 - reduced number of hash lookups
 - · store references to uncles and grand uncles in nodes
 - · store most recently postponed node in a register
- additional building blocks currently not used in software (e.g. due to register pressure)
 - discard unreachable postponed nodes
 - pause and resume traversal in current node
- exhaustive tests
 - many different and freely available scenes
 - various practical camera positions
 - different ray types

Results: Performance in M rays/s, NVIDIA Titan X, for Primary/Shadow/Diffuse Rays

	Stack [Aila 2009]			Stackless [Áfra 2014]			ours		
	Primary	Shadow	Diffuse	Р	S	D	Р	S	D
Armadillo	837	236	214	-13%	-10%	-11%	+17%	+32%	+35%
Conference	786	399	253	-16%	-2%	-13%	+4%	+25%	+20%
Dragon	743	212	194	-16%	-13%	-15%	+17%	+32%	+31%
Emily	676	254	234	-20%	-12%	-14%	+9%	+26%	+25%
Buddha	1237	210	185	-12%	-11%	-12%	+15%	+34%	+32%
Hairball	190	77	65	-23%	-6%	-12%	+1%	+25%	+22%
Enchanted Forest	237	81	64	-14%	-5%	-12%	+5%	+22%	+19%
San-Miguel	246	149	81	-20%	-7%	-20%	+4%	+23%	+10%
Average				-17%	-12%	-19%	+8%	+20%	+17%

We are hiring.

akeller@nvidia.com