Efficient Stackless
with Backtracki

Nikolaus Binder and Ale:

<A NVIDIA.

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

postponed nodes

@®

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

postponed nodes

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

postponed nodes

® @
O @ @

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

postponed nodes

@
@

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

postponed nodes

@
@

Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking

postponed nodes

@
®

Efficient Hierarchy Traversal
Comparing previous backtracking strategies

addr(3)

-addi(5)-

Efficient Hierarchy Traversal
Comparing previous backtracking strategies

addr(3)

-add(5)- 1

Efficient Hierarchy Traversal
Comparing previous backtracking strategies

addr(3)

\' 9 oS}~

(=)
"R R e

Efficient Hierarchy Traversal
Comparing previous backtracking strategies

m
K—— addr(3)

\’ ©, eieS)

-

(=]

Q
N
®

W W R e
R

Efficient Hierarchy Traversal
Comparing previous backtracking strategies

Stackless, Stackless,
Stack Backtracking Backtracking

from root with parents/siblings

state for book keeping (per ray) O(h(tree)) o(1) o)

backtracking effort o(1) O'(h(tree)) O(h(tree))

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nt" uncle in constant time

1

O @ ; :

(=] o
- -

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nt" uncle in constant time

1

O @ ; :

©)
. e e
=N N

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nt" uncle in constant time

1

@ ® o

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nt" uncle in constant time

1

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

Perfect Hash Map h: node key k — node address addr(k)

properties
- no collisions
- no need to store keys

- lookup in constant time

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k — (k mod | T|+ D[k mod |D|]) mod |T]| [Tarjan, Yao 1979]

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
kmod |T| |
D
8 +0 8
1 9 +0 1 i 9
2 18 T i 2 18 i i
g 3 19 +0 i i 3 i 19 i
:E: 4 +0 3 i i 4 i 3
5 40 | 3 i i 5 3 |
38 +0 o 3 i 3 | !
38 [0 HERERE 39| | !
S={1,2,3,4,5,8,9,18,19,38,39} [t] | : ‘ 2 ‘ s E .59‘1;‘9‘ o []
S| =11 s

|T| =11 =S| = minimal perfect hash table
D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

kmod |D|

38

~
3
‘_“_“_“_“N‘N‘N‘_“*‘
N
3

39

S={1,2
|S| =11
|T| =11 =S| = minimal perfect hash table
D=8

13,4,5,8,9,18,19,38,39} LT T T T I TITTITIT]

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T| 1
#| D
8 f +0
1 9 T +0 1 9
. " 2| [+ ! !
g 3 19 2| [+ i i
:E: 4 (1] [+ 3 3
5 1 +0 | |
38 [] [0 | |
39 1] [w | |
L' ! ‘
S$=1{1,2,3,4,5,8,9,18,19,38,39} [t] | i LT T T T T I . []
S| =11

|T| =11 =S| = minimal perfect hash table
D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T| 1
#| D
8 1 +0
1 9 2 +0 1 9
2 18 2 +0 i 2 18 i
a 3 19 2| |+0 B i i
° [I | | I
o T T T [l
£ 4 1 +0 | | | |
x I L Il L L
5 1] [+0 o i |
L ‘ ‘
38 1 +0 s | |
39 1 +0 o | !
L' ! ‘
S§=1{1,2,3,4,5,8,9,18,19,38,39} HERBEEEEDEDE
S| =11

|T| =11 =S| = minimal perfect hash table
D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T| 1
#| D
8 1 +0
1 9 2 +0 1 9
2 18 2 +0 i 2 18 i
a 3 19 2| |+0 RERE T e
° [I | | I
o 0 T T T T 0
E 4 1 +0 | R
s L' N Ll
5 1 +0 | | | | | |
38 1 +0 S]
39 1 +0 S]
L' ! ‘
S$=1{1,2,3,4,5,8,9,18,19,38,39} (7] [1]z[s] [[[w]re]e] |
S| =11

|T| =11 =S| = minimal perfect hash table
D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

#| D
8 1 +0 8
1 9 2 +0 1 i 9
2 18 2 +0 i 2 18 i i
a 3 19 2| |+0 RERE T e |
° [I | | I
1] I T T T I
£ 4 1 +0 i 1 ! ! |
~ - I I | I L
5 1] |0 R | !
38 1 +0 S | |
39 1 +0 S | !
L' ! ‘
L Il ! Il L
S$=1{1,2,3,4,5,8,9,18,19,38,39} (7] [i]zfs] [] | . o] |
S| =11 s

|T| =11 =S| = minimal perfect hash table
D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T| 1
D
8 1 +1 —> 8 ‘
1 9 2 +0 1 :
2 18 2 +0 i 2 18
8 3 19 2| |+0 RERE e
= L | ‘
o — T T T T T T
E 4 1 +0 R [
< L N Ll
T -
5 1 40 I o]
L L Ll
38 1]]+0 . .
39 1 +0 S L i
o R .
S$=1{1,2,3,4,5,8,9,18,19,38,39} (7] []z]s] [] [s]e -:|
[S] =11 ¢

|T| =11 =S| = minimal perfect hash table
D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

kmod |D|

38

~
3
‘_“_“_“_“N‘N‘N‘_“*‘
N
3

39

©of{-—4-——ft--fF-—f-—f--1 @
o |-~ --4-——ft-—-F-—-f - -]

O e el et SR St)

S={1,2
[S|=11
|T| =11 =S| = minimal perfect hash table
D=8

13,4,5,8,9,18,19,38,39} [t] |

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

kmod |D|

38

~
3
‘_“_“_“_“N‘N‘N‘_“*‘
N
3

39

O e el et SR St)
[T e e Al SIS SR I)
©ofq-t--t-——-f-|-|-1 0

ot -ttt -f-] -

S={1,2
|S| =11
|T| =11 =S| = minimal perfect hash table
D=8

13,4,5,8,9,18,19,38,39} 7]

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

kmod |D|

38

‘_“_“_“_“N‘N‘N‘_“*‘

39

O e el et SR St)
[T e e Al SIS SR I)

N e e e
©ofq-t-—t-—f-|-f -]

ot -ttt -f-] -

E‘AAAAAA b
®
©

S={1,2
[S|=11
|T| =11 =S| = minimal perfect hash table
D=8

13,4,5,8,9,18,19,38,39} 7]

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

kmod |D|

38

39

~
@
‘_“_“_“_“N‘N‘N‘_“*‘
N
3

©of{-—4-——ft--ft-—f-—--1 @
o |-~ --4-——ft-—-F-—-f - -]

O e el et SR St)
[T e e Al SIS SR I)

S={1,2,3,4,5,8,9,18,19,38,39} 7]
1S = 11

|T| =11 =S| = minimal perfect hash table

D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

kmod |D|

38

39

‘_“_“_“_“N‘N‘N‘_“*‘

o |-~ --4-——ft-—-F-—-f - -]

O e el et SR St)

S={1,2,3,4,5,8,9,18,19,38,39} [t] |
S| = 11

|T| =11 =S| = minimal perfect hash table

D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

kmod |D|

38

39

‘_“_“_“_“N‘N‘N‘_“*‘

O e el et SR St)
[T e e Al SIS SR I)
©ofq-t-—t-—f-|-f -]

ot -ttt -f-] -

S={1,2,3,4,5,8,9,18,19,38,39} [t] |
S| = 11

|T| =11 =S| = minimal perfect hash table

D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

kmod |D|

38

39

~
@
‘_“_“_“_“N‘N‘N‘_“*‘
N
3

o |-~ --4-——ft-—-F-—-f - -]

O e el et SR St)
[T e e Al SIS SR I)

S={1,2,3,4,5,8,9,18,19,38,39} [t] |
S| = 11

|T| =11 =S| = minimal perfect hash table

D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

kmod |D|

38

39

~
@
‘_“_“_“_“N‘N‘N‘_“*‘
N
3

o |-~ --4-——ft-—-F-—-f - -]

[T e e Al SIS SR I)

S$=1{1,2,3,4,5,8,9,18,19,38,39} ‘T‘ ‘ 1 ‘
S| =11 s
|T| =11 =S| = minimal perfect hash table

D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

kmod |D|

38

39

~
@
‘_“_“_“_“N‘N‘N‘_“*‘
N
3

- &

T
S$=1{1,2,3,4,5,8,9,18,19,38,39} ‘T‘ ‘ 1 ‘ 2 ‘
S| =11 ;
|T| =11 =S| = minimal perfect hash table
D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

kmod |D|

38

39

~
@
‘_“_“_“_“N‘N‘N‘_“*‘
N
3

T
S§=1{1,2,3,4,5,8,9,18,19,38,39} ‘T‘ ‘ 1 ‘ 2 ‘
S| =11
|T| =11 =S| = minimal perfect hash table
D=8

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]

kmod |T|

kmod |D|

38

39

~
@
‘_“_“_“_“N‘N‘N‘_“*‘
N
3

- &

©of{-—4-——ft--ft-—f-—--1 @
o |-~ --4-——ft-—-F-—-f - -]

S=1{1,2,3,4,5,8,9,18,19,38,39} ‘1- ‘39‘ 1 ‘ ;
|S| =11 5

|T| =11 =S| = minimal perfect hash table —_—
D=8 :

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 3: Reducing the number of hash lookups

= backtracking statistics
- to sibling: 27%
- to uncle: 15%

- to grand uncle: 15%

around 57% alltogether

grand® uncle
grand"? uncle
grand'® uncle
grand'” uncle

grand'® uncle
grand'® uncle
grand'! uncle
grand'® uncle
grand'? uncle
grand'! uncle
grand!® uncle
grand” uncle
grand® uncle
grand” uncle
grand® uncle
grand® uncle
grand’ uncle
grand® uncle
grand? uncle
grand uncle

uncle

sibling

0 15% 27% 42% 57% 68% 7% 84% .-+ 100%

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 3: Reducing the number of hash lookups

= backtracking statistics
- to sibling: 27%
- to uncle: 15% around 57% alltogether

- to grand uncle: 15%

= store references to uncle and grand uncle in node
- in unused padding space
- data loaded anyway

grand® uncle
grand"” uncle
grand'® uncle
grand!” uncle
grand'® uncle
grand'® uncle
grand'! uncle
grand'® uncle
grand'? uncle
grand'! uncle
grand!® uncle
grand” uncle
grand® uncle
grand” uncle
grand® uncle
grand® uncle
grand’ uncle
grand® uncle

grand? uncle
grand uncle

uncle

sibling

0 15% 27% 42% 57% 68% 7% 84% .-+ 100%

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 3: Reducing the number of hash lookups

= backtracking statistics
- to sibling: 27%
- to uncle: 15% around 57% alltogether

- to grand uncle: 15%

= store references to uncle and grand uncle in node
- in unused padding space
- data loaded anyway

= store most recently postponed node in a register
- always used for transitions to siblings

- similar to a short stack, but more powerful

grand® uncle
grand"” uncle
grand'® uncle
grand!” uncle
grand'® uncle
grand'® uncle
grand'! uncle
grand'® uncle
grand'? uncle
grand'! uncle
grand!® uncle
grand” uncle

grand® uncle
grand” uncle
grand® uncle
grand® uncle
grand’ uncle
grand® uncle
grand? uncle
grand uncle

uncle

sibling

0 15% 27% 42% 57% 68% 7% 84% .-+ 100%

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

subtrees behind intersection may not always be culled

- due to overlapping bounding boxes

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

subtrees behind intersection may not always be culled

- due to overlapping bounding boxes

discard levels with disjoint t-intervals

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

subtrees behind intersection may not always be culled
- due to overlapping bounding boxes

discard levels with disjoint t-intervals
- cheap

- no fp values stored
- mask with one bit per level
- bit set to one if overlapping, zero if disjoint

- bitwise and with bit trail after intersection has been found

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

subtrees behind intersection may not always be culled

- due to overlapping bounding boxes

discard levels with disjoint t-intervals
- cheap

- no fp values stored

- mask with one bit per level

- bit set to one if overlapping, zero if disjoint

- bitwise and with bit trail after intersection has been found
- compromise

- cannot account for intersections outside overlap

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 5: Resuming traversal in last node node instead of starting at the root

= pause: state (key and bit trail) must be stored

= resume: start in last node, set bit trail to
- previous bit trail if same ray origin and direction
- transparent/translucent object, cut outs
- 1 for all levels above current level if ray origin or direction has changed
- tracing paths

- refraction

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

optimized stackless traversal
- backtracking in constant time by perfect hashing
- reduced number of hash lookups

- store references to uncles and grand uncles in nodes

- store most recently postponed node in a register

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

optimized stackless traversal

- backtracking in constant time by perfect hashing
- reduced number of hash lookups
- store references to uncles and grand uncles in nodes

- store most recently postponed node in a register

additional building blocks currently not used in software (e.g. due to register pressure)
- discard unreachable postponed nodes

- pause and resume traversal in current node

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

optimized stackless traversal
- backtracking in constant time by perfect hashing
- reduced number of hash lookups

- store references to uncles and grand uncles in nodes

- store most recently postponed node in a register

additional building blocks currently not used in software (e.g. due to register pressure)
- discard unreachable postponed nodes

- pause and resume traversal in current node

exhaustive tests
- many different and freely available scenes
- various practical camera positions

- different ray types

Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Results: Performance in M rays/s, NVIDIA Titan X, for Primary/Shadow/Diffuse Rays

Stack [Aila 2009]

Stackless [Afra 2014]

DN

Armadillo 214 -13% -10% -11% +17% +32% +35%
Conference 786 399 253 -16% 2% -13% +4% +25% +20%
Dragon 743 212 194 -16% -13% -15% +17% +32% +31%
Emily 676 254 234 -20% -12% -14% +9% +26% +25%
Buddha 1237 210 185 -12% -11% -12% +15% +34% +32%
Hairball 190 77 65 23% 6% -12% +1% +25% +22%
Enchanted Forest 237 81 64 -14% -5% -12% +5% +22% +19%
San-Miguel 246 149 81 20% 7% -20% +4% +23% +10%

Average “17% -12% -19% +8% +20% +17%

We are hiring.

akeller@nvidia.com

	Efficient Hierarchy Traversal
	Pruning/postponing nodes and backtracking

	Efficient Hierarchy Traversal
	Comparing previous backtracking strategies

	Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
	Building block 1: Using a bit trail, go to nth uncle in constant time
	Building block 2: Two level hashing using an additional displacement table D
	Building block 3: Reducing the number of hash lookups
	Building block 4: Avoid pointless backtracking
	Building block 5: Resuming traversal in last node node instead of starting at the root
	Summary
	Results: Performance in M rays/s, NVIDIA Titan X, for Primary/Shadow/Diffuse Rays

