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Efficient Hierarchy Traversal
Pruning/postponing nodes and backtracking
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Efficient Hierarchy Traversal
Comparing previous backtracking strategies
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Efficient Hierarchy Traversal
Comparing previous backtracking strategies

Stackless, Stackless,
Stack Backtracking Backtracking

from root with parents/siblings

state for book keeping (per ray) O(h(tree)) o(1) o)

backtracking effort o(1) O'(h(tree)) O(h(tree))



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 1: Using a bit trail, go to nt" uncle in constant time
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Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

Perfect Hash Map h: node key k — node address addr(k)

properties
- no collisions
- no need to store keys

- lookup in constant time



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 2: Two level hashing using an additional displacement table D

k — (k mod | T|+ D[k mod |D|]) mod |T]| [Tarjan, Yao 1979]
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k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
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k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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k— (k + D[k mod |D|]) mod |T| [Tarjan, Yao 1979]
Greedy resolution in decreasing number of dependencies [Fox, Heath, Chen, and Daoud 1992]
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Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 3: Reducing the number of hash lookups

= backtracking statistics
- to sibling: 27%
- to uncle: 15%

- to grand uncle: 15%

around 57% alltogether
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Building block 3: Reducing the number of hash lookups

= backtracking statistics
- to sibling: 27%
- to uncle: 15% around 57% alltogether

- to grand uncle: 15%

= store references to uncle and grand uncle in node
- in unused padding space
- data loaded anyway

= store most recently postponed node in a register
- always used for transitions to siblings

- similar to a short stack, but more powerful
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0 15% 27% 42% 57%  68% 7% 84% .-+ 100%



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

subtrees behind intersection may not always be culled

- due to overlapping bounding boxes



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

subtrees behind intersection may not always be culled

- due to overlapping bounding boxes

discard levels with disjoint t-intervals




Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

subtrees behind intersection may not always be culled
- due to overlapping bounding boxes

discard levels with disjoint t-intervals
- cheap

- no fp values stored
- mask with one bit per level
- bit set to one if overlapping, zero if disjoint

- bitwise and with bit trail after intersection has been found



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time

subtrees behind intersection may not always be culled

- due to overlapping bounding boxes

discard levels with disjoint t-intervals
- cheap

- no fp values stored

- mask with one bit per level

- bit set to one if overlapping, zero if disjoint

- bitwise and with bit trail after intersection has been found
- compromise

- cannot account for intersections outside overlap



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Building block 5: Resuming traversal in last node node instead of starting at the root

= pause: state (key and bit trail) must be stored

= resume: start in last node, set bit trail to
- previous bit trail if same ray origin and direction
- transparent/translucent object, cut outs
- 1 for all levels above current level if ray origin or direction has changed
- tracing paths

- refraction
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optimized stackless traversal
- backtracking in constant time by perfect hashing
- reduced number of hash lookups

- store references to uncles and grand uncles in nodes

- store most recently postponed node in a register

additional building blocks currently not used in software (e.g. due to register pressure)
- discard unreachable postponed nodes

- pause and resume traversal in current node

exhaustive tests
- many different and freely available scenes
- various practical camera positions

- different ray types



Efficient Stackless Hierarchy Traversal with Backtracking in Constant Time
Results: Performance in M rays/s, NVIDIA Titan X, for Primary/Shadow/Diffuse Rays

Stack [Aila 2009]

Stackless [Afra 2014]

DN

Armadillo 214 -13% -10% -11%  +17% +32% +35%
Conference 786 399 253 -16% 2% -13% +4% +25% +20%
Dragon 743 212 194 -16% -13%  -15% +17% +32% +31%
Emily 676 254 234 -20% -12% -14% +9% +26% +25%
Buddha 1237 210 185 -12%  -11% -12%  +15% +34% +32%
Hairball 190 77 65 23% 6% -12%  +1% +25% +22%
Enchanted Forest 237 81 64 -14%  -5% -12% +5% +22% +19%
San-Miguel 246 149 81 20% 7%  -20%  +4% +23% +10%

Average “17% -12% -19% +8% +20% +17%
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