
Framebuffer Compression Using Dynamic Color Palettes

Ayub A. Gubran
ayoubg@ece.ubc.ca

The University of British Columbia

Tor M. Aamodt
aamodt@ece.ubc.ca

The University of British Columbia

Problem and Motivation
 Mobile devices spend significant amount of energy to access off-chip memory.

 Graphics operations are a large consumer of off-chip bandwidth for operations
like framebuffer reading/writing.

 Compression helps to reduce the amount of bandwidth substantially.

 Mobile devices usage statistics show that most of the time is spent using UI
applications:

Gaming
32%

UI Apps
68%

Time Spent on iOS and Android
Connected Devices

The RGB color space used by UI
applications (Twitter on the right) is small
compared to 3D applications (Temple
Run 2) on the left.

Main Observation and Contribution
 Our main goal is to design a framebuffer compression scheme that is more

effective to the most common use cases in mobile devices.

 We use a simple elegant scheme that exploits temporal coherence in graphics.
Unlike other compression schemes, our scheme uses temporal, rather spatial
coherence.

0%

50%

100%

1

1
0

1

2
0

1

3
0

1

4
0

1

5
0

1

6
0

1

7
0

1

8
0

1

9
0

1

1
0

0
1

1
1

0
1

1
2

0
1

1
3

0
1

1
4

0
1

1
5

0
1

1
6

0
1

1
7

0
1

1
8

0
1

1
9

0
1

2
0

0
1

2
1

0
1

2
2

0
1

2
3

0
1

Pixels change (new content)

Pixels displacement(same content)

New web searchScrolling Loading BBC news
Loading
Amazon

• Web browsing (Chrome)

%
 o

f
sc

re
e

n
 s

iz
e

Frame

Temporal coherence in Chrome. The figure shows that most of the changes each frame are
displacement of pixels rather than new pixels being drawn. This means that adjacent frames
look very much alike, so we can predict the compression parameters for each new frame using
the information from the previous frame(s).

Dynamic Color Palettes
 Dynamic Color Palettes (DCP) collects the most common pixel values in

each frame to predict a compression palette (dictionary) that will be used
to compress the next frame.

Evaluation
 We evaluated DCP using a set of frames from mobile UI and 3D

workloads.

 DCP is compared against two framebuffer algorithms. The first
one by Rasmusson et al., (RAS)1 which uses spatial coherence to
encode difference between predicted and actual pixel colors.

 The second algorithm (we refer to it by RED)2 compresses tiles of
similar color values. This algorithm is efficient when there are
large spaces covered by similar color values, as the case with UI
apps.

 DCP configuration that we used are as follows:

 As pixels are required to update the FVC to be able to collect
frequent values, this may create a bottleneck as FVC updates are
atomic. So we evaluated the effect of reducing the number of
pixels that update the FVC, so that only 1 out of N pixel values is
used.

 Also we evaluated the rate of creating new CCD dictionaries.
Where we construct a new compression dictionary every Nth
frame instead of every frame.

 UI applications are highly
compressible, compared to 3D
applications, due to the simple
content (solid background colors,
text, icons…etc.).

 The simple content of UI
applications has a potential for good
compression using simple schemes
like color palettes (dictionaries).

 However, to use color palettes, we
need to predict the values of the
palette of each frame before drawing
it.

DCP Algorithms
 We used three versions of the DCP compression. The first version is

the base DCP where a basic dictionary encoding is used.

Frame 0 Frame 1 Frame 2

FVC

Time

Construct FVC from
the current frame’s

pixel values

Construct the CCD dictionary for
the next frame using the FVC

values

To memory

CCDFVC

To memory

FVCCCD

To memory

Framebuffer
access

compressed
using the

CCD

In DCP two hardware structures are used. The first structure is the Frequent Values
Collector (FVC), an associative structure that collects the most frequent color values. At the
end of each frame, the FVC holds frequent values information, which is used to construct
the Common Colors Dictionary (CCD). The CCD encodes the most frequent colors of the
previous frame contained in the FVC. CCD is used to compress pixel tiles that exclusively
contain color values in the CCD.

GPU

Pixel tiles

1
CCD (Compress current tile)

2b

Write a

compressed tile

Write a non-

compressed tile

Can

compress

all pixels in

the current

tile?

Yes No

3

FVC (constructs a CCD for

the next frame)

2aSend Tile

Buffer compressed &

non-compressed tiles

of block

Write to

memory

4

In step 3 if all the pixels in a
tile exist in the CCD then
the tile is compressible.
Each color value in a
compressible tile is
represented by log2(CCD
size) bits. So for an RGBA
color value of 32 bits and
CCD size of 64 entries, each
color value is compressed to
6 bits.
In 4, compressed/non-
compressed tiles are
buffered and written to
memory.

In stage 1 pixel tiles are sent to the framebuffer. Tiles can be organized in blocks (i.e.,
cache blocks) that contain one or more tiles.
At stage 2 each tile in a block is sent to the FVC and the CCD. In 2a , each pixel value in a
tile accesses the FVC and changes the corresponding frequency value. In parallel at 2b, the
tile’s pixel values are checked by the CCD to see if all the pixel values exist in the CCD.

DCP Pipeline

The first variation is Variable DCP (VDCP)
where the color palette size changes every
frame to obtain the largest possible
compression. By looking at the frequency
of the most common pixel values, we
resize the color palette and the encoding
size as a consequence.

CCD
(sorted by
frequency)

C0

C1

C2

C3

C4

C5

C6

C7

000
001
010
011
100
101
110
111

{00,01}
{0,1}
{φ}

{000,101}
{110,010}
{110,111}

{C0,Cy}
{Cx,C2}

{C0, C2}
{C0, C1}
{C0, C0}
{C0, C5}
{C6, C2}
{C6, C7}
{C0, Cy}
{Cx, C2}

010
001
000
011
011
011
111
111

Tile colors Encoding CSBThe second algorithm is Adaptive DCP (ADCP). Here we
choose the encoding size for each color based on its
frequency. We use an auxiliary buffer, Compression
Status Buffer (CSB), which indicates the encoding lengths
of each compressed tile. More common pixel values use
shorter encodings. In this aspect, ADCP is similar to
Huffman encoding but with a simpler implementation.

AB: Angry Birds PH: Android Phone CH: Chrome

FB: Facebook HO: Android Home
Screen

KD: Amazon Kindle

MS: Android
Messaging

ST: Android Settings TW: Twitter

UI Workloads

TR: Temple
Run 2

GS: Gunship 2

NS: Need for
Speed

FN: Fruit Ninja

3D Workloads

UI ADCP 4.13:1 UI RAS 2.5:1
UI RED 2.62:1

1

2

4

8

16

32

AB PH CH FB HO KD MS ST TW UI HM TR GS NS FN 3D HM

C
o

m
p

re
ss

io
n

 R
at

e RAS RED
DCP VDCP
ADCP

ADCP achieves a mean compression of 4.13:1 for UI applications compared to
2.5:1 for RAS and 2.62:1 with RED. However, as expected, DCP algorithms
come short to produce significant compression rates in 3D applications with a
rate of 1.09:1 compared to 1.13:1 for RED and 1.79:1 for RAS.

0.6

0.8

1

1.2

AB PH CH FB HO KD MS ST TW HM

Compression rate relative to using all pixel
values to update the FVC

1:4 1:32 1:256 1:1024

DCP Configurations

FVC Size 64 CCD Size 64

FVC Replacement Policy Least-frequent value Compression tile size 2x2

0.5
0.6
0.7
0.8
0.9

1

A
B

P
H

C
H FB H
O

K
D

M
S ST TW H

M

Compression rate relative to
sampling every frame

2 8 32

DCP achieves similar compression rates
when less pixels are used to update the
FVC.

Good compression rates when the
rate of updating the CCD palette is
reduced shows adequate temporal
coherence across multiple frames.

(1) RASMUSSON et al., T. 2007. Exact and error-bounded approximate color buffer compression and
decompression. In the Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware
(2) NVIDIA, 2015. NVIDIA Tegra X1 Whitepaper. URL: international.download.nvidia.com/pdf/tegra/Tegra-
X1-whitepaper-v1.0.pdf

1:N sampling rate

Sampling period

mailto:ayoubg@ece.ubc.ca
mailto:aamodt@ece.ubc.ca

