

Grid-Free Out-Of-Core Voxelization to Sparse Voxel Octrees on GPU

Martin Pätzold and Andreas Kolb, Computer Graphics and Multimedia Systems Group, University of Siegen

Motivation

- **Sparse Voxel Octrees** (SVOs) are promising to represent massively large and detailed scenes
- Exploit the **performance** of the GPU and allow an **out-of-core** voxelization with sophisticated **attribute** creation

[Crassin & Green 2012]

[Laine & Karras 2010+2011]

[Baert et al. 2013+2014]

Main Question

- How do we achieve a performant **out-of-core** processing that uses parallelism of **GPU**? → **stream batches** (subsets) of triangles & voxels
- Triangles need to be sorted in the same order as nodes of the SVO are created
 - → Morton order maps multidimensional data to linear
 index and preserves locality
 for SVO-creation

Morton (child) = 7 (0111) Morton (parent) = 1 (7/4)

More Questions

- Which SVO nodes can be created?
- Where do we need a triangle first?
 - \rightarrow determine Morton indices
- For efficient CPU/GPU-transfer, each triangle should be processed only once: What to do with unprocessable voxels?
- How do we create parent attributes for incomplete child nodes?
 - \rightarrow store them for later processing

bottom

• Out-of-core voxelization approaches require a **streamed** processing of **triangles and voxels**

• Optimized processing on GPU needs a **workload balancing** depending on the **created voxels per triangle**

- Creating **triangle batches** that the GPU can handle at once
- Sequential process requires a triangle order for voxel streaming

- Creating **voxel attribute sets** from the current triangle batch
- **Predicted** number of voxels per triangle → **no atomic** operation

- Not all voxels will be processable for streamed SVO creation
- → **Store** voxels between iterations and **extract** processable voxels

• Current voxel attribute set is used for a **bottom-up** creation of **parts** of the **SVO** by **parallel compaction** methods

Subdivision of Triangles

- First step consists of a "homogenization" of triangles
 - **Size** limit → **balanced workload** on GPU (1 triangle per thread)
 - Locality of Morton ranges → limit voxels that need to be maintained over the sequential batch iterations
- Apply **subdivision rules** if equation below is not fulfilled
- 3 cases: long thin triangles (angles: >90°, <20°), all other triangles

Sorting & Batch Creation

- Sort triangles according to the minimum Morton index of their bounding boxes → earliest possible need for a triangle
- Create batches according to voxel count prediction → processable
 triangles per iteration by GPU (max. voxel count as user-defined value)
- Store minimum Morton index of 1st triangle of next batch
 - \rightarrow valid Morton range for creation of SVO-nodes

Voxelization

- Triangle batch is voxelized to a *"per-triangle voxel memory"* (offsets given by prediction) → *no atomic* operations
- Method of Schwarz and Seidel [2010]
 - Each thread processes one triangle
 - Conservative surface voxelization
- Attribute creation in the same step
 - \rightarrow project voxel center to **uv-coords**.
- Set of valid voxel-attribute pairs is obtained by removing placeholders and copied to Morton queue

Morton Queueing

- After voxelization of a triangle batch, processable voxels for creation of the SVO need to be determined
- Morton queue stores unusable voxels from previous iterations
 & all voxels of curr. iteration
 batch j
 batch j+1
- After sorting of Morton queue, the 1st Morton index of batch j+1 is used as stop to extract a set of voxel-attribute
 pairs for SVO creation

SVO Creation

- Valid set of voxel-attribute pairs is used to create parts of SVO
 bottom-up with parallel stream compaction (parent = child/8)
- Each GPU thread processes all child nodes of one parent
- Data structure, similar to [Laine and Karras 2010]:
 - **Bitmasks** to address the non-empty voxels (mod)
 - Voxel attributes (e.g. color)
 - indices (child-pointer) on CPU

Post-Order Attribute Creation

- Parent attributes are created only if **all child nodes available**
- Use of a **stitch queue** on each hierarchy level buffers voxel-attribute pairs until all nodes are given
- Attributes can be determined by **multipass-operations**, etc.

Scene Hairball (2.8 M			II (2.8 M t	riangles)	Lucy (28.0 M triangles)			Atlas (506.5 M triangles)		
Resolution		2048	4096	8192	2048	4096	8192	2048	4096	8192
[Laine/Karras 2011]		274.4 s	763.7 s	2657.8 s	964.3 s	1001.9 s	1097.4 s	-	-	-
[Baert et al. 2014]		134.4 s	759.2 s	4459.9 s	17.5 s	40.7 s	97.9 s	223.3 s	351.4 s	676.3 s
Our algorithm		83.0 s	281.9 s	1195.5 s	11.7 s	16.9 s	30.3 s	270.0 s*	239.8 s*	345.7 s*
Scene		Buddha	a (30.3 K	triangles)	Sponza (262.3 K triangles)		San Miguel (10.1 M triang		triangles)	
Resolution		2048	4096	8192	2048	4096	8192	2048	4096	8192
col.	[Laine/Karras 2011]	14.3 s	59.9 s	243.2 s	24.8 s	92.1 s	364.2 s	(140.6 s)	(153.39 s)	(165.9 s)
0 0	[Baert et al. 2014]	15.4 s	66.6 s	372.1 s	23.1 s	83.6 s	437.1 s	9.5 s	26.5 s	107.4 s
o/w	Our algorithm	4.4 s	14.0 s	49.4 s	6.8 s	24.1 s	97.9 s	6.2 s	12.0 s	32.6 s
-	[Laine/Karras 2011]	16.5 s	65.3 s	262.6 s	31.3 s	112.4 s	428.7 s	(171.7 s)	(187.5 s)	(203.9 s)
r col.	[Baert et al. 2014]	55.4 s	166.3 s	611.6 s	52.1 s	363.7 s	1416.9 s	13.0 s	37.6 s	228.3 s
3	Our algorithm	5.1 s	17.9 s	50.4 s	11.0 s	30.8 s	111.6 s	13.2 s	20.4 s	44.3 s

* : average over three runs, (...) : scene could be voxelized, but not rendered

		W.									
Sce	ene		Hairba	(2.8 M	riangles)	Lucy	(28.0 M ri	angles)	Atlas	(506.5 M tria	angles)
Res	solution		2048	1096	8192	2048	4096	8192	2048	4096	8192
[Laine/Karras 2011]			274.4 s	763.7 s	2657.8 s	964.3 s	1001.9 s	1097.4 s	-	-	-
[Baert et al. 2014]			134.4 s	759.2 s	4459.9 s	17.5 s	40.7 s	97.9 s	223.3 s	351.4 s	676.3 s
Our algorithm		83.0 s	281.9 s	1195.5 s	11.7 s	16.9 s	30.3 s	270.0 s*	239.8 s*	345.7 s*	
Sce	ene		Buddha	a (30.3 K	triangies)	Sponza	a (262.3 K ⁻	triangles) I	San Mig	uel (10.1 M	triangles)
Res	solution		C	Sparsity of scene has more influence 4096 8192 153.39 s) (165.9 s)							
<u>j</u>	[Laine/Karras 20	011]	Spars	sity c	of scer	ne ha	s mor	e infli	uence	ence 153.39 s)	
w/o col.	[Baert et al. 201	.4]	on performance than triangle count 12.0 s								107.4 s
Ň	Our algorithm		on p	ertor	mance	e tha	n tria	ngle c	count	12.0 s	32.6 s
									(187.5 s)	(203.9 s)	
w col.	[Baert et al. 20 Our algorithm	Οι									228.3 s 44.3 s
	suitable than long thin triangles of Hairball									t rendered	

Scene		Hairba	Hairball (2.8 M triangles)Lucy (28.0 M triangles)						(506.5 M tri	angles)
Resolution		2048	4096	8192	2048	4096	8192	2048	4096	8192
[Laine/Karras 2011]		274.4 s	763.7 s	2657.8 s	964.3 s	1001.9 s	1097.4 s	-	-	-
[Baert et al. 2014]		134.4 s	759.2 s	4459.9 s	17.5 s	40.7 s	97.9 s	223.3 s	351.4 s	676.3 s
Our algorithm		83.0 s	281.9 s	1195.5 s	11.7 s	16.9 s	30.3 s	270.0 s*	239.8 s*	345.7 s*
Scene		Buddha	Buddha (30.3 K triangles) Sponza (262.3 K triangles) San Miguel (10						uel (10.1 M	triangles)
Res	Resolutionis[Laine/Karras 2011]Sub-partioning of Baert et al. [2014] is more									
col.	[Laine/Karras 2011]	Sub	-part	tionin	g ot∣	Baert	et al.	[2014	j is mo	ore
-	[Baert et al. 2014]			-	-		_			_
o/w	Our algorithm	per ⁻	forma	ant th	an o	ur tria	ngle :	sortin	g if tria	angle
.	[Laine/Karras 2011]									5
r col.	[Baert et al. 2014]	count is high and grid resolution is low								
3	Our algorithm			•	-					
		(but better scalability for higher resolutions)								

Sce	ene	_					Atlas (506.5 M triangles)				
Res	solution	B	Better scalability if workload on							4096	8192
[Laine/Karras 2011]							-	-	-		
[Baert et al. 2014] GPU is higher (color attributes)						223.3 s	351.4 s	676.3 s			
Our algorithm							270.0 s*	239.8 s*	345.7 s*		
Scene			Suddh	a (30.3 K ⁻	0.3 K ^t triangles) Sponza (262.3 K ^t triangles)			San Miguel (10.1 M triangles)			
Resolution			2048	4096	8192	2048	4096	8192	2048	4096	8192
col.	[Laine/Karras 2011]		14.3 s	59.9 s	243.2 s	24.8 s	92.1 s	364.2 s	(140.6 s)	(153.39 s)	(165.9 s)
	[Baert et al. 2014]		15.4 s	66.6 s	372.1 s	23.1 s	83.6 s	437.1 s	9.5 s	26.5 s	107.4 s
w/o	Our algorithm		4.4 s	14.0 s	49.4 s	6.8 s	24.1 s	97.9 s	6.2 s	12.0 s	32.6 s
_	[Laine/Karras 2011]		16.5 s	65.3 s	262.6 s	31.3 s	112.4 s	428.7 s	(171.7 s)	(187.5 s)	(203.9 s)
r col.	[Baert et al. 2014]		55.4 s	166.3 s	611.6 s	52.1 s	363.7 s	1416.9 s	13.0 s	37.6 s	228.3 s
3	Our algorithm		5.1 s	17.9 s	50.4 s	11.0 s	30.8 s	111.6 s	13.2 s	20.4 s	44.3 s

*: average over three runs, (...): scene could be voxelized, but not rendered

High initialization cost (e.g. texture

Sce	ene	Hairba	II (2.8 M i		
Res	solution	2048	4096	IC	
[La	ine/Karras 2011]	274.4 s	763.7 s		
[Ba	ert et al. 2014]	134.4 s	759.2 s	b	
Ou	r algorithm	83.0 s	281.9 s		
Sce	ene	Buddha	ddha (30.3 K t		
Res	solution	2048	4096	82	
о.	[Laine/Karras 2011]	14.3 s	59.9 s	24	
w/o col.	[Baert et al. 2014]	15.4 s	66.6 s	372	
Ň	Our algorithm	4.4 s	14.0 s	49	
<u> </u>	[Laine/Karras 2011]	16.5 s	65.3 s	26	
col.	[Baert et al. 2014]	55.4 s	166.3 s	61	

pading) is bad for small resolution

out neglectable for higher resolution

Sce	ene	Buddha	a (30.3 K	triangles)	Sponza	a (262.3 K	triangles)	San Mig	triangles)	
Res	solution	2048	4096	8192	2048	4096	8192	2048	8192	
col.	[Laine/Karras 2011]	14.3 s	59.9 s	243.2 s	24.8 s	92.1 s	364.2 s	(140.5 s)	(153.39 s)	(165.9 s)
Ō	[Baert et al. 2014]	15.4 s	66.6 s	372.1 s	23.1 s	83.6 s	437.1 s	9.5 s	26.5 s	107.4 s
M	Our algorithm	4.4 s	14.0 s	49.4 s	6.8 s	24.1 s	97.9 s	6.2 s	12.0 s	32.6 s
	[Laine/Karras 2011]	16.5 s	65.3 s	262.6 s	31.3 s	112.4 s	428.7 s	(17 <u>1.</u> 7 s)	(187.5 s)	(202.0 s)
00	[Baert et al. 2014]	55.4 s	166.3 s	611.6 s	52.1 s	363.7 s	1416.9 s	13.0 s	37.6 s	228.3 s
3	Our algorithm	5.1 s	17.9 s	50.4 s	11.0 s	30.8 s	111.6 s	13.2 s	20.4 s	44.3 s

* : average over three runs, (...) : scene could be voxelized, but not rendered

Results (attributes)

Mesh

Textured

[Laine/Karras 2011] contour

[Baert et al. 2014]

Ours

[Laine/Karras 2011] voxel

UNIVERSITÄT SIEGEN

Conclusion

- Out-of-core voxelization on GPU with workload balancing
- Processing of non-empty voxels only → grid-free
- Possibility to create attributes in post-order
- Future Work:
 - Adaptive batch determination → size of Morton queue (performance vs. out-of-memory)
 - Create more **sophisticated voxel attributes** (statistics of underlying attributes, sorting)

Thank you for your attention!

e-mail: {martin.paetzold, andreas.kolb} @uni-siegen.de

Acknowledgments

The research project is funded by the German Research Foundation (DFG) as part of the research training group **GRK 1564 "Imaging New Modalities"**

Hairball: Nvidia Research. Lucy: Stanford 3D Scanning Repository.
 Atlas: The Digital Michelangelo Project. San Miguel: Guillermo M. Leal Llaguno.
 Crytek Sponza: Frank Meinl. Buddha: Kun Zhou. Teapot: Martin Newell.

Results (influence of user-defined values)

- **Performance** increases with more voxels per batch and remains constant for voxels per triangles but drops for smallest value
- **Memory** usage increases with more voxels per batch and slightly decreases with more voxels per triangle

Results (influence of user-defined values)

- **Triangle count** increases with more voxels per batch and decreases with more voxels per triangle
- Number of generated voxel-attribute pairs increases with more voxels per batch & remains constant with more voxels per triangle

