High-Performance Rendering of Realistic Cumulus
Clouds Using Pre-Computed Lighting

Egor Yusov

Introduction

Clouds are integral part of outdoor scenes

Rendering good-looking and fast clouds is
challenging

June 23-25, 2014 High Performance Graphics 2014 -

Existing methods

« Billboards

« [Dobashi et al. 2000, Harris & Lastra 2001, Harris
2003, Wang 2004]

 Volume rendering (Slicing)

« [Schpok et al. 2003, Kniss et al. 2004, Miyazaki et al.
2004, Riley et al. 2004]

« Precomputed solutions

« [Sloan et al. 2002, Bouthors et al. 2006, Bouthors et
al. 2008, Ament et al. 2013]

June 23-25, 2014 High Performance Graphics 2014 -

Our method

« Attempts to combine flexibility of the particle-based approaches with the quality
of pre-computed techniques

« Key ideas:
« Use volumetric particles representing the actual 3D-shapes
« Use physically-based lighting

» Pre-compute lighting and other quantities to avoid expensive ray-marching or
slicing at run time

« Perform volume-aware blending instead of alpha blending

June 23-25, 2014 High Performance Graphics 2014 q

Algorithm overview

Initial step - modeling clouds with spherical particles

Algorithm overview

Add pre-computed cloud density and transparency

Algorithm overview

Add pre-computed light scattering

Algorithm overview

Add light occlusion

Algorithm overview

Add volume-aware blending (enabled by Pixel Sync)

Algorithm overview

Add light scattering

Scattering physics

June 23-25, 2014 High Performance Graphics 2014 q

Scattering physics

Optical depth integral
Light gets attenuated while it travels through the cloud L

No absorption => only out-scattering attenuates the
light

Optical depth is the amount of scattering matter on the
way of light:

B
T(A - B) = jA B(P) ds

Transmittance is the fraction of light survived out-
scattering:

L = e—T(A—)B) . LIn

June 23-25, 2014 High Performance Graphics 2014 q

Scattering physics

Single-scattering integral \ \ \ \ \

0
Ly, = p(g)jc e T(®P=C) g(P) L(P) ds C P 0

L(P) is the light intensity at point P m// 6
e—T(P—)C)

B (P) is the scattering coefficient at point P

T(P — C) is the optical thickness of the media between
points P and C

p(6) is the phase function

June 23-25, 2014 High Performance Graphics 2014 q

Scattering physics

Light is also attenuated in the cloud before it reaches \ \ k\ \ \

the scattering point:

L(P)=L e~T(4~P \ e T =P
C \P_—>0

L is the light intensity outside the cloud m/ 0

Let's now look at our integral:

[s®a [pwyas

0
L, = p(9)j e TP-0OR(P)L e TA~P) gg
C

June 23-25, 2014 High Performance Graphics 2014 q

Scattering physics

Multiple scattering

0)
L =p(0) j e~T®=0 B(P) [(P) ds
C

J(P) = j L (@)p(8)dw

Q

Q is the whole set of directions

June 23-25, 2014 High Performance Graphics 2014 q

Pre-computed lighting

The mainidea is to

« Precompute physically-based lighting
for simple shapes

« Construct clouds from these simple
shapes

« The term Particle will now refer to these
basic shapes (not individual tiny droplets)

June 23-25, 2014 High Performance Graphics 2014 q

Pre-computing optical depth)
T B) = [pP)ds

Typical way to evaluate optical depth is ray marching

= |mpractical to do in real-time \ /

For a known density distribution, the integral can be
evaluated once and stored in a look-up table for all /
possible viewpoints and directions >

= No ray marching at run-time

= Fast evaluation for the price of memory / \

June 23-25, 2014 High Performance Graphics 2014 m

Pre-computing optical depth)
T B) = [pP)ds

Parameterization

We need to describe all start points on the sphere and all
directions

Start Point

Two angles describe start point on the sphere

Two angles describe view direction

4D look-up table is required

June 23-25, 2014 High Performance Graphics 2014

Pre-computing optical depth)
TA-B)= [pP)ds

Integration
= Integration is performed by stepping along the ray and Start Point
numerically computing optical thickness
= (loud density at each step is determined through 3D
noise
= 4D look-up table is implemented as 3D texture

= For look-up, manual filtering across 4t coordinate is
necessary

June 23-25, 2014 High Performance Graphics 2014

Pre-computing optical depth

3D Noise generation

Radial falloff+3D noise Thresholding Pyroclastic style

June 23-25, 2014 High Performance Graphics 2014

Pre-computing optical depth

June 23-25, 2014 High Performance Graphics 2014

Pre-computing scattering

0
= Let's consider spherically symmetrical _ _T(P=C)
particle L fc e L (P) Lp(f)dw | ds

Q

= Any start point on the sphere can be
described by a single angle

= \/iew direction is described by two angles

= Thus 3 parameters are necessary to describe
any start point and view direction -> 3D
look-up table

June 23-25, 2014 High Performance Graphics 2014

Pre-computing scattering

Intermediate 4D table is used to store radiance for every point in the sphere
For each scattering order:

1. Compute J(P) for every point and direction inside the sphere by
integrating previous order scattering

Jn = j Ln1(@)p(8)da

Q

2. Compute current order inscattering by numerical integration of J,,:
0

L = f e~T®=0R(P)]. (P)ds

C

3. Add current scattering order to the total look-up table
June 23-25, 2014 High Performance Graphics 2014

Pre-computing scattering

Pre-computed scattering for different light orientations

June 23-25, 2014 High Performance Graphics 2014 q

Pre-computing scattering

Combining pre-computed lighting and pre-computed cloud density

June 23-25, 2014 High Performance Graphics 2014 q

Pre-computing scattering

June 23-25, 2014 High Performance Graphics 2014

Computing light occlusion

June 23-25, 2014 High Performance Graphics 2014

Computing light occlusion

Tiling ' I
= The scene is rasterized from the light over the tile grid
= One tile is one pixel

= Each particle is assigned to the tile
= Screen-size buffer is used to store index of the first

|
particle in the list . .

= Append buffer is used to store the lists elements ‘

= Pixel Shader Ordering is used to preserve original
particle order (sorted from the light)

June 23-25, 2014 High Performance Graphics 2014 ﬂ

Computing light occlusion

\ ‘
Traversing lists ‘ v
= Processing is done by the compute shader < ‘
= Each particle finds a tile it belongs to ‘ @
= The shader then goes through the list of the tile and \

computes opacity of particles on the light path ‘ -
= The loop is terminated as soon as current particle is \ ‘

reached ‘
= QOr if total transparency reaches threshold (0.01)

June 23-25, 2014 High Performance Graphics 2014 q

Computing light occlusion

June 23-25, 2014 High Performance Graphics 2014

Volume-aware blending

Blending volumetric particles

o
>
= |f particles do not overlap, blending is trivial ~
= How can we correctly blend overlapping
particles?
g >

June 23-25, 2014 High Performance Graphics 2014 q

Volume-aware blending

Blending volumetric particles Co» Po C1, p1

= Suppose we have two overlapping particles with
color and density C,, po and C;, p;

= Back:

" Tgack = e~Prdph ill >
" Cgack = C1 - (1 — Tgaer)
= Front:
Trront = e Podrh
" Crront = Co* (1 — Trront) df d; dy
€ D€ >€ >

= |ntersection:
Tisoc = €~ (PotPL)diB

__ Copot+C1pq
Clsec - Do+p1 (1 - TIsec)

June 23-25, 2014 High Performance Graphics 2014 q

Front Isec Back

Volume-aware blending

Blending volumetric particles Co, Po C1, p1
= Final color and transparency:

TFinal — TFront : TIsec : TBack

CFront +Clsec ’ TFront +CBack ’ TFront' Tlsec

CFinal —
1-— TFinal

= Division by 1 — T;,4; because we do not want alpha
pre-multiplied color

June 23-25, 2014 High Performance Graphics 2014 q

Volume-aware blending

Blending volumetric particles - Implementation

UAV Back buffer

June 23-25, 2014 High Performance Graphics 2014 q

Volume-aware blending

= DirectX does not impose any ordering on the execution of pixel shader
= Ordering happens later at the output merger stage

= |f two threads read and modify the same memory, result is unpredictable

Time

Thread 1 Work Read [Modify | Write

Thread 2 Work Read | Modify | Write

June 23-25, 2014 High Performance Graphics 2014 q

Volume-aware blending

Pixel Shader Ordering assures that

= Read-modify-write operations are protected, i.e. no thread can read the N
memory before other thread finishes writing to it

= All memory access operations happen in the same order in which
primitives were submitted for rendering

Time

Thread 1 Work Read [Modify | Write

Thread 2 Work Read | Modify | Write

June 23-25, 2014 High Performance Graphics 2014 ﬂ

Volume-aware blending

No Pixel Sync - Conventional Alpha Blending

Volume-aware blending

Pixel Sync - VVolume-Aware Blending

Particle generation

Cell grid

= Organized as a number of concentric rings centered
around the camera

= Particles in each next ring have twice the size of
the inner ring

= Each cell contains several layers of particles

= Density and size of particles in each cell are
determined by the noise texture

June 23-25, 2014 High Performance Graphics 2014 q

Particle generation

Animation:
Clouds are animated by changing particle size and
transparency
2%
3;‘[_20 (.
o'e
T
..,

June 23-25, 2014 High Performance Graphics 2014 m

Results

Demo available at https://software.intel.com/en-us/blogs/2014/03/31/cloud-rendering-sample

June 23-25, 2014 High Performance Graphics 2014 q

https://software.intel.com/en-us/blogs/2014/03/31/cloud-rendering-sample

Performance

Intel Iris Pro 5200 (47 W), 1280x720

Time, ms

40
N 1842 x4 x4
%0 1362x4 x4
25 1042 x 4 x 2
20
15
10
5
. .]]]

low quality medium qual high quality

W Particle rendering ® Atm. Scattering Other Total

June 23-25, 2014 High Performance Graphics 2014 m

Performance

Nvidia GeForce GTX 680 (195 W), 1920x1080

Time, ms

18
o 184°x4 x4
- 1362x 4 x 4
. 1042x4x2
8
6
4 I
2
0 .]]]

low quality medium qual high quality

W Particle rendering ® Atm. Scattering Other Total

June 23-25, 2014 High Performance Graphics 2014 q

Questions?

Thank You

June 23-25, 2014 High Performance Graphics 2014 q

