
High-Performance Rendering of Realistic Cumulus
Clouds Using Pre-Computed Lighting

Egor Yusov

Introduction

Clouds are integral part of outdoor scenes

Rendering good-looking and fast clouds is

challenging

2
High Performance Graphics 2014June 23-25, 2014

Existing methods

• Billboards

• [Dobashi et al. 2000, Harris & Lastra 2001, Harris

2003, Wang 2004]

• Volume rendering (Slicing)

• [Schpok et al. 2003, Kniss et al. 2004, Miyazaki et al.

2004, Riley et al. 2004]

• Precomputed solutions

• [Sloan et al. 2002, Bouthors et al. 2006, Bouthors et

al. 2008, Ament et al. 2013]

3
High Performance Graphics 2014June 23-25, 2014

Our method

• Attempts to combine flexibility of the particle-based approaches with the quality

of pre-computed techniques

• Key ideas:

• Use volumetric particles representing the actual 3D-shapes

• Use physically-based lighting

• Pre-compute lighting and other quantities to avoid expensive ray-marching or

slicing at run time

• Perform volume-aware blending instead of alpha blending

4
High Performance Graphics 2014June 23-25, 2014

Algorithm overview

Initial step – modeling clouds with spherical particles

5

Algorithm overview

Add pre-computed cloud density and transparency

6

Algorithm overview

Add pre-computed light scattering

7

Algorithm overview

Add light occlusion

8

Algorithm overview

Add volume-aware blending (enabled by Pixel Sync)

9

Algorithm overview

Add light scattering

10

Scattering physics

11
High Performance Graphics 2014June 23-25, 2014

Scattering physics

Optical depth integral

Light gets attenuated while it travels through the cloud

No absorption => only out-scattering attenuates the
light

Optical depth is the amount of scattering matter on the
way of light:

Transmittance is the fraction of light survived out-
scattering:

12

𝑇(𝐀 → 𝐁) =
𝐀

𝐁

𝛽 𝐏 𝑑𝑠

𝐿 = 𝑒−𝑇(𝐀→𝐁) ∙ 𝐿𝐼𝑛

𝐿𝐼𝑛𝐿

𝐴𝐵

High Performance Graphics 2014June 23-25, 2014

Scattering physics

Single-scattering integral:

𝐿 𝐏 is the light intensity at point P

𝛽 𝐏 is the scattering coefficient at point P

𝑇 𝐏 → 𝐂 is the optical thickness of the media between

points P and C

𝑝 𝜃 is the phase function

13

𝐿𝐼𝑛 =
𝐶 𝑂

𝑝 𝜃 𝐿 𝐏
𝐂

𝐎

𝑒−𝑇 𝐏→𝐂 𝛽 𝐏 𝑑𝑠

𝜃

𝑒−𝑇 𝐏→𝐂

𝑃

High Performance Graphics 2014June 23-25, 2014

Scattering physics

Light is also attenuated in the cloud before it reaches

the scattering point:

𝐿 is the light intensity outside the cloud

Let’s now look at our integral:

14

𝑃𝐶 𝑂
𝐿 𝐏 = 𝐿 𝑒−𝑇 𝑨 →𝑷

𝜃

𝑒−𝑇 𝐏→𝐂

𝐴

𝑒−𝑇 𝑨 →𝑷

𝐿𝐼𝑛 = 𝑝 𝜃
𝐂

𝐎

𝑒−𝑇 𝐏→𝐂 𝛽 𝐏 𝐿 𝑒−𝑇 𝑨 →𝑷 𝑑𝑠

𝐏

𝐂

𝛽 𝐏 𝑑𝑠
𝐀

𝐏

𝛽 𝐏 𝑑𝑠

High Performance Graphics 2014June 23-25, 2014

Scattering physics

Multiple scattering

𝛀 is the whole set of directions

15

𝐿 = 𝑝 𝜃 𝐿 𝐏
𝐂

𝐎

𝑒−𝑇 𝐏→𝐂 𝛽 𝐏 𝑑𝑠𝐽 𝐏

𝐽 𝐏 =

𝛀

𝐿 (𝜔)𝑝 𝜃 𝑑𝜔

𝐶 𝑃

𝐽 𝐏

High Performance Graphics 2014June 23-25, 2014

Pre-computed lighting

The main idea is to

• Precompute physically-based lighting

for simple shapes

• Construct clouds from these simple

shapes

• The term Particle will now refer to these

basic shapes (not individual tiny droplets)

16
High Performance Graphics 2014June 23-25, 2014

Pre-computing optical depth

Typical way to evaluate optical depth is ray marching

 Impractical to do in real-time

For a known density distribution, the integral can be

evaluated once and stored in a look-up table for all

possible viewpoints and directions

 No ray marching at run-time

 Fast evaluation for the price of memory

17

𝑇(𝐀 → 𝐁) =
𝐀

𝐁

𝛽 𝐏 𝑑𝑠

High Performance Graphics 2014June 23-25, 2014

Pre-computing optical depth

Parameterization

 We need to describe all start points on the sphere and all

directions

 Two angles describe start point on the sphere

 Two angles describe view direction

 4D look-up table is required

18

𝑇(𝐀 → 𝐁) =
𝐀

𝐁

𝛽 𝐏 𝑑𝑠

Ray Direction

Start Point

High Performance Graphics 2014June 23-25, 2014

Pre-computing optical depth

Integration

 Integration is performed by stepping along the ray and

numerically computing optical thickness

 Cloud density at each step is determined through 3D

noise

 4D look-up table is implemented as 3D texture

 For look-up, manual filtering across 4th coordinate is

necessary

19

𝑇(𝐀 → 𝐁) =
𝐀

𝐁

𝛽 𝐏 𝑑𝑠

Start Point

High Performance Graphics 2014June 23-25, 2014

Pre-computing optical depth

3D Noise generation

20

Radial falloff+3D noise Thresholding Pyroclastic style

June 23-25, 2014 High Performance Graphics 2014

Pre-computing optical depth

21
High Performance Graphics 2014June 23-25, 2014

Pre-computing scattering

 Let’s consider spherically symmetrical

particle

 Any start point on the sphere can be

described by a single angle

 View direction is described by two angles

 Thus 3 parameters are necessary to describe

any start point and view direction -> 3D

look-up table

22

𝐿 =
𝐂

𝐎

𝑒−𝑇 𝐏→𝐂 𝛽 𝐏 𝑑𝑠

𝛀

𝐿 𝑝 𝜃 𝑑𝜔

High Performance Graphics 2014June 23-25, 2014

Pre-computing scattering

Intermediate 4D table is used to store radiance for every point in the sphere

For each scattering order:

1. Compute 𝐽 𝐏 for every point and direction inside the sphere by

integrating previous order scattering

2. Compute current order inscattering by numerical integration of 𝐽𝑛:

3. Add current scattering order to the total look-up table

23

𝐽𝑛 =

𝛀

𝐿𝑛−1(𝜔)𝑝 𝜃 𝑑𝜔

𝑃

𝐽 𝐏

𝐿𝑛 =

𝑪

𝑶

𝑒−𝑇 𝐏→𝐂 𝛽 𝐏 𝐽𝑛 𝐏 𝑑𝑠

June 23-25, 2014 High Performance Graphics 2014

Pre-computing scattering

24

Pre-computed scattering for different light orientations

High Performance Graphics 2014June 23-25, 2014

Pre-computing scattering

25

Combining pre-computed lighting and pre-computed cloud density

High Performance Graphics 2014June 23-25, 2014

Pre-computing scattering

26
High Performance Graphics 2014June 23-25, 2014

Computing light occlusion

27
High Performance Graphics 2014June 23-25, 2014

Computing light occlusion

Tiling

 The scene is rasterized from the light over the tile grid

 One tile is one pixel

 Each particle is assigned to the tile

 Screen-size buffer is used to store index of the first

particle in the list

 Append buffer is used to store the lists elements

 Pixel Shader Ordering is used to preserve original

particle order (sorted from the light)

28
High Performance Graphics 2014June 23-25, 2014

Computing light occlusion

Traversing lists

 Processing is done by the compute shader

 Each particle finds a tile it belongs to

 The shader then goes through the list of the tile and

computes opacity of particles on the light path

 The loop is terminated as soon as current particle is

reached

 Or if total transparency reaches threshold (0.01)

29
High Performance Graphics 2014June 23-25, 2014

Computing light occlusion

30
High Performance Graphics 2014June 23-25, 2014

Volume-aware blending

Blending volumetric particles

 If particles do not overlap, blending is trivial

 How can we correctly blend overlapping

particles?

31
High Performance Graphics 2014June 23-25, 2014

Volume-aware blending

Blending volumetric particles

 Suppose we have two overlapping particles with
color and density 𝐶0, 𝜌0 and 𝐶1, 𝜌1

 Back:

 𝑇𝐵𝑎𝑐𝑘 = 𝑒
−𝜌1∙𝑑𝑏∙𝛽

 𝐶𝐵𝑎𝑐𝑘 = 𝐶1 ∙ 1 − 𝑇𝐵𝑎𝑐𝑘

 Front:

 𝑇𝐹𝑟𝑜𝑛𝑡 = 𝑒
−𝜌0∙𝑑𝑓∙𝛽

 𝐶𝐹𝑟𝑜𝑛𝑡 = 𝐶0 ∙ 1 − 𝑇𝐹𝑟𝑜𝑛𝑡

 Intersection:

 𝑇𝐼𝑠𝑒𝑐 = 𝑒
−(𝜌0+𝜌1)∙𝑑𝑖∙𝛽

 𝐶𝐼𝑠𝑒𝑐 =
𝐶0𝜌0+𝐶1𝜌1

𝜌0+𝜌1
1 − 𝑇𝐼𝑠𝑒𝑐

32

𝐶0, 𝜌0 𝐶1, 𝜌1

𝑑𝑓 𝑑𝑖 𝑑𝑏

BackIsecFront

High Performance Graphics 2014June 23-25, 2014

Volume-aware blending

Blending volumetric particles

 Final color and transparency:

 Division by 1 − 𝑇𝐹𝑖𝑛𝑎𝑙 because we do not want alpha

pre-multiplied color

33

𝐶0, 𝜌0 𝐶1, 𝜌1

𝐶𝐹𝑖𝑛𝑎𝑙 =

𝑇𝐹𝑖𝑛𝑎𝑙 = ∙ 𝑇𝐵𝑎𝑐𝑘∙ 𝑇𝐼𝑠𝑒𝑐𝑇𝐹𝑟𝑜𝑛𝑡

𝐶𝐹𝑟𝑜𝑛𝑡 +𝐶𝐼𝑠𝑒𝑐 ∙ 𝑇𝐹𝑟𝑜𝑛𝑡 +𝐶𝐵𝑎𝑐𝑘 ∙ 𝑇𝐹𝑟𝑜𝑛𝑡∙ 𝑇𝐼𝑠𝑒𝑐

1 − 𝑇𝐹𝑖𝑛𝑎𝑙

High Performance Graphics 2014June 23-25, 2014

Volume-aware blending

Blending volumetric particles - Implementation

34

UAV Back buffer

High Performance Graphics 2014June 23-25, 2014

Volume-aware blending

 DirectX does not impose any ordering on the execution of pixel shader

 Ordering happens later at the output merger stage

 If two threads read and modify the same memory, result is unpredictable

35

Read Modify WriteThread 1

Read Modify WriteThread 2

Time

Memory

Work

Work

High Performance Graphics 2014June 23-25, 2014

Volume-aware blending

Pixel Shader Ordering assures that

 Read-modify-write operations are protected, i.e. no thread can read the

memory before other thread finishes writing to it

 All memory access operations happen in the same order in which

primitives were submitted for rendering

36

Read Modify WriteThread 1

Read Modify WriteThread 2

Time

Memory

Work

Work

High Performance Graphics 2014June 23-25, 2014

Volume-aware blending

37

No Pixel Sync – Conventional Alpha Blending

Volume-aware blending

38

Pixel Sync – Volume-Aware Blending

Particle generation

Cell grid

 Organized as a number of concentric rings centered

around the camera

 Particles in each next ring have twice the size of

the inner ring

 Each cell contains several layers of particles

 Density and size of particles in each cell are

determined by the noise texture

39
High Performance Graphics 2014June 23-25, 2014

Particle generation

Animation:

Clouds are animated by changing particle size and

transparency

40
High Performance Graphics 2014June 23-25, 2014

Results

41
High Performance Graphics 2014June 23-25, 2014

Demo available at https://software.intel.com/en-us/blogs/2014/03/31/cloud-rendering-sample

https://software.intel.com/en-us/blogs/2014/03/31/cloud-rendering-sample

Performance

Intel Iris Pro 5200 (47 W), 1280x720

42

0

5

10

15

20

25

30

35

40

low quality medium qual high quality

Time, ms

Particle rendering Atm. Scattering Other Total

1042 x 4 x 2
1362 x 4 x 4

1842 x 4 x 4

High Performance Graphics 2014June 23-25, 2014

Performance

Nvidia GeForce GTX 680 (195 W), 1920x1080

43

0

2

4

6

8

10

12

14

16

18

low quality medium qual high quality

Time, ms

Particle rendering Atm. Scattering Other Total

1042 x 4 x 2
1362 x 4 x 4

1842 x 4 x 4

High Performance Graphics 2014June 23-25, 2014

Questions?

Thank You

44
High Performance Graphics 2014June 23-25, 2014

