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Challenges of Hair Geometry 

• Path Tracing hair requires high sampling rates to reduce noise and aliasing 

 Our approach helps by improving traversal performance 

• Long and thin structures are challenging to bound using AABBs 

 Our approach uses oriented bounding boxes to produce much tighter bounds 

• Many million hairs are common (in particular for furry animals) 

 We use direct ray/hair intersection to keep memory consumption low  

(tesellation impractical because of high memory consumption)  
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Previous Work 

• Path Tracing Hair 

• [Moon and Marschner 2006]: Simulating Multiple Scattering in Hair Using a Photon Mapping Approach 

• [Ou et. al. 2012]: ISHair: Importance Sampling for Hair Scattering 

• Oriented Bounding Box (OBB) Hierarchies 

• [Gottschalk et. al. 1996]: OBB-Tree: A Hierarchical Structure for Rapid Interference Detection 

• [Lext and Akenine-Möller 2001]: Towards Rapid Reconstruction for Animated Ray Tracing 

• OBBs used in commercial renderers 

• Ray/Curve Intersection 

• [Sederberg and Nishita 1990]: Curve Intersection using Bezier Clipping 

• [Nakamaru and Ohno 2002]: Ray Tracing for Curve Primitive 
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Hair Representation 

• Hair subdivided into individual hair segments  

(done in application) 

• Hair segments represented as cubic bezier curves (4 

control points) with interpolated radius (4 radii) 

 

 

p0/r0 p1/r1 

p2/r2 

p3/r3 
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Bounding Representations 

• Axis Aligned Bounding Box (AABB): 

lower and upper bounds in x,y,z in world space 

 

• Oriented Bounding Box (OBB): 

lower and upper bounds in x,y,z in rotated space 
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Bounding Diagonal Hair Segment 

loose 

 many false positives 

tight 

 few false positives 

Axis aligned bounds Oriented bounds 



8 8 

Bounding Diagonal Hair Segments 

significant overlap 

 many traversal steps 

minimal overlap 

 few traversal steps 

Axis aligned bounds Oriented bounds 
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Local Orientation Similarity 

• Neighboring hairs exhibit natural similarity in orientation 

• For real hair, collisions cause similar orientation 

• Synthetic hair mostly mimics real hair 
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Bounding Groups of Similarly Oriented Hairs 

• Groups of equally oriented hair segments are 

effectively bounded by OBBs 

OBB hierarchy efficient for similarly oriented hair 

segments 
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Our Approach 

• Use mixed AABB/OBB hierarchy with fast direct 

ray/curve intersection 

• Exploits local orientation similarity to be efficient. 

• No advantage for random hair distributions. 

 

good 

no advantage 
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Mixed AABB/OBB Hierarchy 

• 4 wide Bounding Volume Hierarchy to make 

effective use of 4-wide SSE 

• Node types 

• AABB nodes store 4 AABBs plus 4 child references 

• OBB nodes store 4 OBBs plus 4 child references 

• Leaf nodes store short lists of individual cubic bezier 

curves 

• Triangles handled in separate BVH simplifies 

the implementation. 

 

 

... ... 

... ... ... 

... 
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AABBs versus OBBs 

• OBBs bound better, but more expensive  tradeoff 

• Towards the root AABBs are best as hair segments are small relative to 

bounding box 

• Towards the leaves OBBs are best as oriented bounds can tightly 

enclose hair strands 

Few nodes store AABBs and many OBBs 

 Many AABB nodes and few OBB nodes get traversed 

 Performance AABB only OBB only AABB+OBB 

100% 146% 186% 
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Uncompressed OBB Nodes 

• Stores 4 OBBs in Struct of Array Layout 

for effective use of SSE 

• OBB stored as affine transformation (3x4 

matrices) that transforms OBB to unit 

AABB 

• Fast ray/OBB intersection by first 

transforming ray and then intersecting 

with unit AABB 

• Requires 224 bytes per node 

 about 2x the size of an AABB node 

struct UncompressedOBBNode  

{ 

   float[4] matrix[3][4]; 

   Node* children[4]; 

} 
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Compressed OBB Nodes 

• Stores one shared quantized 

(signed chars) rotation that 

transforms the OBBs to AABBs 

• Stores merged AABBs (after 

rotation) of all 4 children using 

floating point 

• Stores quantisized (unsigned chars) 

AABBs of each child relative to 

merged AABB 

• Requires only 96 bytes per node  

(less than half of uncompressed) 

 

struct CompressedOBBNode  

{ 

   char matrix[3][4]; 

   float min_x,min_y,min_z; 

   float max_x,max_y,max_y; 

   uchar cmin_x[4],cmin_y[4],cmin_z[4]; 
   uchar cmax_x[4],cmax_y[4],cmax_z[4]; 

   Node* children[4]; 

} 
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AABB/OBB Hierarchy Construction 

• Traditional top down build using SAH heuristic [Wald 2007] 

• Handling lists of bezier curves (not lists of bounding boxes)  
 control points needed for spatial splits 

 control points allow to compute precise bounds in different spaces 

• Use lowest SAH split from multiple splitting heuristics 

• Some splitting heuristics operate in a special hair space 

• Spatial splits [Stich et. al.; Popov et. al.] can make the approach more robust by 

handling challenging cases 
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Split Heuristics 

• AABB Split Heuristics 

• Object Binning (16 bins) in world space 

• Spatial Splits (16 bins) in world space 

• OBB Split Heuristics 

• Object Binning (16 bins) in hair space (most important) 

• Spatial Splits (16 bins) in hair space 

• Similar Orientation Clustering 
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Hair Space 

• Hair space used for binning and calculating OBBs of 

nodes 

• Hair space is a coordinate space with one axis well 

aligned with a set of hair curves 

• Only rotations used to be area preserving 

• Calculation 

• calculate candidate spaces (4 in the paper) aligned with 

main direction (start to end point) of random hairs 

• pick space where sum of surface areas of bounding 

boxes of hair is smallest 

good 

bad 

x 

y 
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Similar Orientation Clustering 

• Can separate two crossing hair strands 
 No single hair space will work well 

• Calculation 

• pick random hair A 

• pick hair B that is maximally misaligned with hair A 

• cluster according to main direction of hairs A and B 

• bound clusters according to space aligned with 

main direction of A and B 

• Gives about 5% higher rendering performance 

A 

B 
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4-wide AABB/OBB Hierarchy Construction 

• Split multiple times to fill up all 4 children  

(pick largest node or node with highest SAH gain) 

• If only „AABB heuristic“ splits create AABB node 

• If one split was an „OBB heuristic“ split create OBB node and  

store OBB aligned with hair space computed for each child 

 SAH decides where to use which node type 
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AABB/OBB Hierarchy Traversal 

• Modified highly optimized BVH4 single ray traversal kernel of Embree 

• Kept fast path for AABB node handling 

• Added slow path for OBB node handling 

• Added fast ray/hair segment intersection 
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Ray-Hair Segment Intersection 

• Use 8-wide AVX to generate 8 points on curve in parallel 

using precalculated Bezier coefficients a,b,c,d: 

 

avxf p = a*p0 + b*p1 + c*p2 + d*p3 

• Intersect ray using 8-wide AVX in parallel with 8 line 

segments using test by [Nakamaru and Ohno 2002] 

• 8 segments work well for our models 

 rarely very curved hair segments need pre-subdivision 

 

 

p0 

p1 

p2 

p3 
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Benchmark Settings 

• Dual Socket Intel® Xeon® E5-2697 (AVX2, 2x 12 cores @ 2.7 GHz, 64GB memory) 

• 1M pixel resolution, path traced including shading (50% shading, 50% tracing) 

• Representative movie content from Dreamworks 

 Tighten 

420k triangles 

2.2M curves 

 

 Tiger 

83k triangles 

6.5M curves 

 

 Sophie 

75k triangles 

13.3M curves 

 

 Yeti 

82k triangles 

153M curves 
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Results 

AABBs 

triangles 

AABBs 

curves 

AABB/OBBs 

curves 

+ spatial splits + compression 

Perf. 3.5fps 3.7fps 6.6fps 7.5fps 7.3fps 

Mem. 1.1GB 257MB 387MB 633MB 404MB 

Perf. 1.44fps 1.0fps 2.1fps 2.7fps 2.5fps 

Mem. 3.5GB 0.8GB 1.1GB 1.8GB 1.1GB 

Perf. 4.2fps 3.5fps 7.1fps 7.3fps 7.1fps 

Mem. 6.8GB 1.6GB 2.1GB 3.3GB 2.7GB 

Perf. - 1.8fps 2.6fps 3.1fps 3.2fps 

Mem. - 18.6GB 21.7GB 34.4GB 24.9GB 

Measured on Dual Socket Intel® Xeon®  E5-2697, 12 cores @ 2.7 GHz 
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Results: Using Ray/Curve Intersector 

AABBs 

triangles 

AABBs 

curves 

AABB/OBBs 

curves 

+ spatial splits + compression 

Perf. 3.5fps 3.7fps 6.6fps 7.5fps 7.3fps 

Mem. 1.1GB 257MB 387MB 633MB 404MB 

Perf. 1.44fps 1.0fps 2.1fps 2.7fps 2.5fps 

Mem. 3.5GB 0.8GB 1.1GB 1.8GB 1.1GB 

Perf. 4.2fps 3.5fps 7.1fps 7.3fps 7.1fps 

Mem. 6.8GB 1.6GB 2.1GB 3.3GB 2.7GB 

Perf. - 1.8fps 2.6fps 3.1fps 3.2fps 

Mem. - 18.6GB 21.7GB 34.4GB 24.9GB 

Using our ray/curve intersector 

reduces performance by 15% 

at 1/4th the memory consumption 

Measured on Dual Socket Intel® Xeon®  E5-2697, 12 cores @ 2.7 GHz 
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Results: Triangles Consume too much Memory 

AABBs 

triangles 

AABBs 

curves 

AABB/OBBs 

curves 

+ spatial splits + compression 

Perf. 3.5fps 3.7fps 6.6fps 7.5fps 7.3fps 

Mem. 1.1GB 257MB 387MB 633MB 404MB 

Perf. 1.44fps 1.0fps 2.1fps 2.7fps 2.5fps 

Mem. 3.5GB 0.8GB 1.1GB 1.8GB 1.1GB 

Perf. 4.2fps 3.5fps 7.1fps 7.3fps 7.1fps 

Mem. 6.8GB 1.6GB 2.1GB 3.3GB 2.7GB 

Perf. - 1.8fps 2.6fps 3.1fps 3.2fps 

Mem. - 18.6GB 21.7GB 34.4GB 24.9GB 

 Out of memory, even 

with 64GB of memory 

and tessellation into only 

8 triangles. 

Measured on Dual Socket Intel® Xeon®  E5-2697, 12 cores @ 2.7 GHz 
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Results: Adding OBBs 

AABBs 

triangles 

AABBs 

curves 

AABB/OBBs 

curves 

+ spatial splits + compression 

Perf. 3.5fps 3.7fps 6.6fps 7.5fps 7.3fps 

Mem. 1.1GB 257MB 387MB 633MB 404MB 

Perf. 1.44fps 1.0fps 2.1fps 2.7fps 2.5fps 

Mem. 3.5GB 0.8GB 1.1GB 1.8GB 1.1GB 

Perf. 4.2fps 3.5fps 7.1fps 7.3fps 7.1fps 

Mem. 6.8GB 1.6GB 2.1GB 3.3GB 2.7GB 

Perf. - 1.8fps 2.6fps 3.1fps 3.2fps 

Mem. - 18.6GB 21.7GB 34.4GB 24.9GB 

adding OBBs gives  

80% speedup for 

30% higher memory 

consumption Measured on Dual Socket Intel® Xeon®  E5-2697, 12 cores @ 2.7 GHz 
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Results: Adding Spatial Splits 

AABBs 

triangles 

AABBs 

curves 

AABB/OBBs 

curves 

+ spatial splits + compression 

Perf. 3.5fps 3.7fps 6.6fps 7.5fps 7.3fps 

Mem. 1.1GB 257MB 387MB 633MB 404MB 

Perf. 1.44fps 1.0fps 2.1fps 2.7fps 2.5fps 

Mem. 3.5GB 0.8GB 1.1GB 1.8GB 1.1GB 

Perf. 4.2fps 3.5fps 7.1fps 7.3fps 7.1fps 

Mem. 6.8GB 1.6GB 2.1GB 3.3GB 2.7GB 

Perf. - 1.8fps 2.6fps 3.1fps 3.2fps 

Mem. - 18.6GB 21.7GB 34.4GB 24.9GB 

spatial splits give  

15% speedup for 

60% higher memory 

consumption 

Measured on Dual Socket Intel® Xeon®  E5-2697, 12 cores @ 2.7 GHz 
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Results: Adding Compression 

AABBs 

triangles 

AABBs 

curves 

AABB/OBBs 

curves 

+ spatial splits + compression 

Perf. 3.5fps 3.7fps 6.6fps 7.5fps 7.3fps 

Mem. 1.1GB 257MB 387MB 633MB 404MB 

Perf. 1.44fps 1.0fps 2.1fps 2.7fps 2.5fps 

Mem. 3.5GB 0.8GB 1.1GB 1.8GB 1.1GB 

Perf. 4.2fps 3.5fps 7.1fps 7.3fps 7.1fps 

Mem. 6.8GB 1.6GB 2.1GB 3.3GB 2.7GB 

Perf. - 1.8fps 2.6fps 3.1fps 3.2fps 

Mem. - 18.6GB 21.7GB 34.4GB 24.9GB 

spatial splits and 

compression give 

13% speedup for 

similar memory 

consumption 

Measured on Dual Socket Intel® Xeon®  E5-2697, 12 cores @ 2.7 GHz 
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Video 

• Path tracing with up to 10 bounces @ about 1M pixels 

• 2x Intel(R) Xeon(R) CPU E5-2687W @ 3.10GHz (16 cores total) 
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Conclusion and Future Work 

• AABB/OBB hierarchy gives almost 2x speedup for hair geometry 

• Need to improve build performance currently 20x slower than building 

standard BVH over curve segments 

• Handling triangles in same BVH could give additional benefit. 

• Support for Motion Blur is important for movie rendering. 
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Questions? 

 

 

Source code for Xeon and Xeon Phi  

available as part of Embree 2.3.1,  

https://embree.github.com 


