
1 1

Exploiting Local Orientation Similarity for

Efficient Ray Traversal of Hair and Fur

Sven Woop, Carsten Benthin, Ingo Wald, Gregory S. Johnson

Intel Corporation
Eric Tabellion

DreamWorks Animation

2 2

Legal Disclaimer and Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer

systems, components, software, operations and functions. Any change to any of those factors may cause the results to

vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated

purchases, including the performance of that product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk are trademarks of

Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

3 3

Challenges of Hair Geometry

• Path Tracing hair requires high sampling rates to reduce noise and aliasing

 Our approach helps by improving traversal performance

• Long and thin structures are challenging to bound using AABBs

 Our approach uses oriented bounding boxes to produce much tighter bounds

• Many million hairs are common (in particular for furry animals)

 We use direct ray/hair intersection to keep memory consumption low

(tesellation impractical because of high memory consumption)

4 4

Previous Work

• Path Tracing Hair

• [Moon and Marschner 2006]: Simulating Multiple Scattering in Hair Using a Photon Mapping Approach

• [Ou et. al. 2012]: ISHair: Importance Sampling for Hair Scattering

• Oriented Bounding Box (OBB) Hierarchies

• [Gottschalk et. al. 1996]: OBB-Tree: A Hierarchical Structure for Rapid Interference Detection

• [Lext and Akenine-Möller 2001]: Towards Rapid Reconstruction for Animated Ray Tracing

• OBBs used in commercial renderers

• Ray/Curve Intersection

• [Sederberg and Nishita 1990]: Curve Intersection using Bezier Clipping

• [Nakamaru and Ohno 2002]: Ray Tracing for Curve Primitive

5 5

Hair Representation

• Hair subdivided into individual hair segments

(done in application)

• Hair segments represented as cubic bezier curves (4

control points) with interpolated radius (4 radii)

p0/r0 p1/r1

p2/r2

p3/r3

6 6

Bounding Representations

• Axis Aligned Bounding Box (AABB):

lower and upper bounds in x,y,z in world space

• Oriented Bounding Box (OBB):

lower and upper bounds in x,y,z in rotated space

7 7

Bounding Diagonal Hair Segment

loose

 many false positives

tight

 few false positives

Axis aligned bounds Oriented bounds

8 8

Bounding Diagonal Hair Segments

significant overlap

 many traversal steps

minimal overlap

 few traversal steps

Axis aligned bounds Oriented bounds

9 9

Local Orientation Similarity

• Neighboring hairs exhibit natural similarity in orientation

• For real hair, collisions cause similar orientation

• Synthetic hair mostly mimics real hair

10 10

Bounding Groups of Similarly Oriented Hairs

• Groups of equally oriented hair segments are

effectively bounded by OBBs

OBB hierarchy efficient for similarly oriented hair

segments

11 11

Our Approach

• Use mixed AABB/OBB hierarchy with fast direct

ray/curve intersection

• Exploits local orientation similarity to be efficient.

• No advantage for random hair distributions.

good

no advantage

12 12

Mixed AABB/OBB Hierarchy

• 4 wide Bounding Volume Hierarchy to make

effective use of 4-wide SSE

• Node types

• AABB nodes store 4 AABBs plus 4 child references

• OBB nodes store 4 OBBs plus 4 child references

• Leaf nodes store short lists of individual cubic bezier

curves

• Triangles handled in separate BVH simplifies

the implementation.

... ...

...

...

13 13

AABBs versus OBBs

• OBBs bound better, but more expensive  tradeoff

• Towards the root AABBs are best as hair segments are small relative to

bounding box

• Towards the leaves OBBs are best as oriented bounds can tightly

enclose hair strands

Few nodes store AABBs and many OBBs

 Many AABB nodes and few OBB nodes get traversed

 Performance AABB only OBB only AABB+OBB

100% 146% 186%

14 14

Uncompressed OBB Nodes

• Stores 4 OBBs in Struct of Array Layout

for effective use of SSE

• OBB stored as affine transformation (3x4

matrices) that transforms OBB to unit

AABB

• Fast ray/OBB intersection by first

transforming ray and then intersecting

with unit AABB

• Requires 224 bytes per node

 about 2x the size of an AABB node

struct UncompressedOBBNode

{

 float[4] matrix[3][4];

 Node* children[4];

}

15 15

Compressed OBB Nodes

• Stores one shared quantized

(signed chars) rotation that

transforms the OBBs to AABBs

• Stores merged AABBs (after

rotation) of all 4 children using

floating point

• Stores quantisized (unsigned chars)

AABBs of each child relative to

merged AABB

• Requires only 96 bytes per node

(less than half of uncompressed)

struct CompressedOBBNode

{

 char matrix[3][4];

 float min_x,min_y,min_z;

 float max_x,max_y,max_y;

 uchar cmin_x[4],cmin_y[4],cmin_z[4];
 uchar cmax_x[4],cmax_y[4],cmax_z[4];

 Node* children[4];

}

16 16

AABB/OBB Hierarchy Construction

• Traditional top down build using SAH heuristic [Wald 2007]

• Handling lists of bezier curves (not lists of bounding boxes)
 control points needed for spatial splits

 control points allow to compute precise bounds in different spaces

• Use lowest SAH split from multiple splitting heuristics

• Some splitting heuristics operate in a special hair space

• Spatial splits [Stich et. al.; Popov et. al.] can make the approach more robust by

handling challenging cases

17 17

Split Heuristics

• AABB Split Heuristics

• Object Binning (16 bins) in world space

• Spatial Splits (16 bins) in world space

• OBB Split Heuristics

• Object Binning (16 bins) in hair space (most important)

• Spatial Splits (16 bins) in hair space

• Similar Orientation Clustering

18 18

Hair Space

• Hair space used for binning and calculating OBBs of

nodes

• Hair space is a coordinate space with one axis well

aligned with a set of hair curves

• Only rotations used to be area preserving

• Calculation

• calculate candidate spaces (4 in the paper) aligned with

main direction (start to end point) of random hairs

• pick space where sum of surface areas of bounding

boxes of hair is smallest

good

bad

x

y

19 19

Similar Orientation Clustering

• Can separate two crossing hair strands
 No single hair space will work well

• Calculation

• pick random hair A

• pick hair B that is maximally misaligned with hair A

• cluster according to main direction of hairs A and B

• bound clusters according to space aligned with

main direction of A and B

• Gives about 5% higher rendering performance

A

B

20 20

4-wide AABB/OBB Hierarchy Construction

• Split multiple times to fill up all 4 children

(pick largest node or node with highest SAH gain)

• If only „AABB heuristic“ splits create AABB node

• If one split was an „OBB heuristic“ split create OBB node and

store OBB aligned with hair space computed for each child

 SAH decides where to use which node type

21 21

AABB/OBB Hierarchy Traversal

• Modified highly optimized BVH4 single ray traversal kernel of Embree

• Kept fast path for AABB node handling

• Added slow path for OBB node handling

• Added fast ray/hair segment intersection

22 22

Ray-Hair Segment Intersection

• Use 8-wide AVX to generate 8 points on curve in parallel

using precalculated Bezier coefficients a,b,c,d:

avxf p = a*p0 + b*p1 + c*p2 + d*p3

• Intersect ray using 8-wide AVX in parallel with 8 line

segments using test by [Nakamaru and Ohno 2002]

• 8 segments work well for our models

 rarely very curved hair segments need pre-subdivision

p0

p1

p2

p3

23 23

Benchmark Settings

• Dual Socket Intel® Xeon® E5-2697 (AVX2, 2x 12 cores @ 2.7 GHz, 64GB memory)

• 1M pixel resolution, path traced including shading (50% shading, 50% tracing)

• Representative movie content from Dreamworks

 Tighten

420k triangles

2.2M curves

 Tiger

83k triangles

6.5M curves

 Sophie

75k triangles

13.3M curves

 Yeti

82k triangles

153M curves

24 24

Results

AABBs

triangles

AABBs

curves

AABB/OBBs

curves

+ spatial splits + compression

Perf. 3.5fps 3.7fps 6.6fps 7.5fps 7.3fps

Mem. 1.1GB 257MB 387MB 633MB 404MB

Perf. 1.44fps 1.0fps 2.1fps 2.7fps 2.5fps

Mem. 3.5GB 0.8GB 1.1GB 1.8GB 1.1GB

Perf. 4.2fps 3.5fps 7.1fps 7.3fps 7.1fps

Mem. 6.8GB 1.6GB 2.1GB 3.3GB 2.7GB

Perf. - 1.8fps 2.6fps 3.1fps 3.2fps

Mem. - 18.6GB 21.7GB 34.4GB 24.9GB

Measured on Dual Socket Intel® Xeon® E5-2697, 12 cores @ 2.7 GHz

25 25

Results: Using Ray/Curve Intersector

AABBs

triangles

AABBs

curves

AABB/OBBs

curves

+ spatial splits + compression

Perf. 3.5fps 3.7fps 6.6fps 7.5fps 7.3fps

Mem. 1.1GB 257MB 387MB 633MB 404MB

Perf. 1.44fps 1.0fps 2.1fps 2.7fps 2.5fps

Mem. 3.5GB 0.8GB 1.1GB 1.8GB 1.1GB

Perf. 4.2fps 3.5fps 7.1fps 7.3fps 7.1fps

Mem. 6.8GB 1.6GB 2.1GB 3.3GB 2.7GB

Perf. - 1.8fps 2.6fps 3.1fps 3.2fps

Mem. - 18.6GB 21.7GB 34.4GB 24.9GB

Using our ray/curve intersector

reduces performance by 15%

at 1/4th the memory consumption

Measured on Dual Socket Intel® Xeon® E5-2697, 12 cores @ 2.7 GHz

26 26

Results: Triangles Consume too much Memory

AABBs

triangles

AABBs

curves

AABB/OBBs

curves

+ spatial splits + compression

Perf. 3.5fps 3.7fps 6.6fps 7.5fps 7.3fps

Mem. 1.1GB 257MB 387MB 633MB 404MB

Perf. 1.44fps 1.0fps 2.1fps 2.7fps 2.5fps

Mem. 3.5GB 0.8GB 1.1GB 1.8GB 1.1GB

Perf. 4.2fps 3.5fps 7.1fps 7.3fps 7.1fps

Mem. 6.8GB 1.6GB 2.1GB 3.3GB 2.7GB

Perf. - 1.8fps 2.6fps 3.1fps 3.2fps

Mem. - 18.6GB 21.7GB 34.4GB 24.9GB

 Out of memory, even

with 64GB of memory

and tessellation into only

8 triangles.

Measured on Dual Socket Intel® Xeon® E5-2697, 12 cores @ 2.7 GHz

27 27

Results: Adding OBBs

AABBs

triangles

AABBs

curves

AABB/OBBs

curves

+ spatial splits + compression

Perf. 3.5fps 3.7fps 6.6fps 7.5fps 7.3fps

Mem. 1.1GB 257MB 387MB 633MB 404MB

Perf. 1.44fps 1.0fps 2.1fps 2.7fps 2.5fps

Mem. 3.5GB 0.8GB 1.1GB 1.8GB 1.1GB

Perf. 4.2fps 3.5fps 7.1fps 7.3fps 7.1fps

Mem. 6.8GB 1.6GB 2.1GB 3.3GB 2.7GB

Perf. - 1.8fps 2.6fps 3.1fps 3.2fps

Mem. - 18.6GB 21.7GB 34.4GB 24.9GB

adding OBBs gives

80% speedup for

30% higher memory

consumption Measured on Dual Socket Intel® Xeon® E5-2697, 12 cores @ 2.7 GHz

28 28

Results: Adding Spatial Splits

AABBs

triangles

AABBs

curves

AABB/OBBs

curves

+ spatial splits + compression

Perf. 3.5fps 3.7fps 6.6fps 7.5fps 7.3fps

Mem. 1.1GB 257MB 387MB 633MB 404MB

Perf. 1.44fps 1.0fps 2.1fps 2.7fps 2.5fps

Mem. 3.5GB 0.8GB 1.1GB 1.8GB 1.1GB

Perf. 4.2fps 3.5fps 7.1fps 7.3fps 7.1fps

Mem. 6.8GB 1.6GB 2.1GB 3.3GB 2.7GB

Perf. - 1.8fps 2.6fps 3.1fps 3.2fps

Mem. - 18.6GB 21.7GB 34.4GB 24.9GB

spatial splits give

15% speedup for

60% higher memory

consumption

Measured on Dual Socket Intel® Xeon® E5-2697, 12 cores @ 2.7 GHz

29 29

Results: Adding Compression

AABBs

triangles

AABBs

curves

AABB/OBBs

curves

+ spatial splits + compression

Perf. 3.5fps 3.7fps 6.6fps 7.5fps 7.3fps

Mem. 1.1GB 257MB 387MB 633MB 404MB

Perf. 1.44fps 1.0fps 2.1fps 2.7fps 2.5fps

Mem. 3.5GB 0.8GB 1.1GB 1.8GB 1.1GB

Perf. 4.2fps 3.5fps 7.1fps 7.3fps 7.1fps

Mem. 6.8GB 1.6GB 2.1GB 3.3GB 2.7GB

Perf. - 1.8fps 2.6fps 3.1fps 3.2fps

Mem. - 18.6GB 21.7GB 34.4GB 24.9GB

spatial splits and

compression give

13% speedup for

similar memory

consumption

Measured on Dual Socket Intel® Xeon® E5-2697, 12 cores @ 2.7 GHz

30 30

Video

• Path tracing with up to 10 bounces @ about 1M pixels

• 2x Intel(R) Xeon(R) CPU E5-2687W @ 3.10GHz (16 cores total)

31 31

Conclusion and Future Work

• AABB/OBB hierarchy gives almost 2x speedup for hair geometry

• Need to improve build performance currently 20x slower than building

standard BVH over curve segments

• Handling triangles in same BVH could give additional benefit.

• Support for Motion Blur is important for movie rendering.

32 32

Questions?

Source code for Xeon and Xeon Phi

available as part of Embree 2.3.1,

https://embree.github.com

