
Out-of-Core Proximity Computation
for Particle-based Fluid Simulation

Duksu Kim Myung-Bae Son
Young J. Kim Jeong-Mo Hong Sung-Eui Yoon

HPG 2014
Presenter:

Particle-based Fluid Simulation

2

Motivation

• To meet the higher realism, a large
number of particles are required
– Tens of millions particles

• In-core algorithm (previous work)
–Manage all data in GPU’s video memory
– Can handle up to 5 M particles with 1 GB

memory for particle-based fluid simulation

• Recent commodity GPUs have 1 ~ 3
GB memories (up to 12 GB)

3

Contributions

• Propose out-of-core methods that
utilize heterogeneous computing
resources and process neighbor search
for a large number of particles

• Propose a memory footprint
estimation method to identify a
maximal work unit for efficient out-of-
core processing

4

Result

5

Up to 65.6 M Particles
Maximum data size: 13 GB

Ours

Map-GPU

NVIDIA mapped memory Tech.
- Map CPU memory space
into GPU memory address space

- Two hexa-core CPUs (192 GB Mem.)
- One GPU (3 GB Mem.)

Particle-based Fluid Simulation

6

Neighbor search

Compute force

Move particles

Particle-based Fluid Simulation

7

Neighbor search

Compute force

Move particles

ε

Performance bottleneck
- Takes 60~80% of simulation computation time

ε-Nearest Neighbor (ε-NN)

Preliminary: Grid-based ε-NN

8

ε
𝑙

(ε < 𝑙)

Preliminary: Grid-based ε-NN

9

𝑙

(ε < 𝑙)

Main memory (CPU side)

10

GPU

Video memory

- Grid data
- Particle data

ε-NN

Results

In-Core Algorithm
(Data<Video Memory)

Assume:
Main memory is enough
- can equip up to 4 TB

Main memory (CPU side)

11

GPU

Video memory

- Grid data
- Particle data

ε-NN

Results

Data > Video Memory

Main memory (CPU side)

12

GPU

Video memory

- Sub-grid(Block) data
- Particle data

ε-NN

Results

Out-of-Core Algorithm

Boundary Region

13

• Required data in adjacent blocks
• Inefficient to handle in an out-of-core

manner

Boundary Region

• Required data in adjacent blocks
• Inefficient to handle in an out-of-core

manner
• Multi-core CPUs handle the boundary

region
– CPU (main) memory contain all required

data
– Ratio of boundary regions is usually much

smaller than inner regions
14

How to Divide the Grid ?

15

How to Divide the Grid ?

• Goal: Find the largest
block that fits to the GPU
memory
– Improve parallel computing

efficiency
• Process a large number of

particles at once
• Minimize data transfer

overhead

– Reduce the boundary region
• As the ratio of boundary

region is increased, the
workload of CPU is increased

16

Required Memory Size
for processing a block, B

17

𝑺 𝑩 = 𝒏𝑩𝑺𝒑 + 𝑺𝒏 (𝒏𝒑𝒊

�

𝒑𝒊∈𝑩

Data size
for storing a particle

Data size
for storing a neighbor info.

of particles in B
of neighbor particles
for the particle i (pi)

Hierarchical Work Distribution

18

a b

d…

…
Front nodes

Workload tree
a b

c

d

𝑺 𝑩 < GPU memory

c

- # of particles in the block
- # of neighbors in the block

Chicken-and-Egg Problem

19

𝑺 𝑩 = 𝒏𝑩𝑺𝒑 + 𝑺𝒏 (𝒏𝒑𝒊

�

𝒑𝒊∈𝑩

of neighbor particles
for the particle i, pi

Data size
for storing a particle

Data size
for storing a neighbor info.

of particles in B

Chicken-and-Egg Problem

20

𝑺 𝑩 = 𝒏𝑩𝑺𝒑 + 𝑺𝒏 (𝒏𝒑𝒊

�

𝒑𝒊∈𝑩

Our approach:
Estimation the number of neighbors for particles

Problem Formulation
• Assumption
– Particles are uniformly distributed in a cell

• Idea
– For a particle, the number of neighbors in a

cell is proportional to the overlap volume
between the search sphere and the cell
weighted by the number of particles in the
cell

21

p

ε

S(p,ε)

Expected Number of Neighbors
of a particle p located at (x, y, z)

22

- 𝑪𝒊 : cells of 𝒑𝒙,𝒚,𝒛 and its adjacency cells
- 𝒏 𝑪𝒊 : the number of particles in the cell
- 𝑶𝒗𝒆𝒓𝒍𝒂𝒑 𝑺(𝒑𝒙,𝒚,𝒛, 𝜺 , 𝑪𝒊) : overlap volume between them
- 𝑽 𝑪𝒊 : volume of the cell

𝑬 𝒑𝒙,𝒚,𝒛 =(𝒏 𝑪𝒊 ∗
𝑶𝒗𝒆𝒓𝒍𝒂𝒑 𝑺(𝒑𝒙,𝒚,𝒛, 𝜺 , 𝑪𝒊)

𝑽(𝑪𝒊)

�

𝒊

Problem Formulation

• Compute 𝐸 𝑝?,@,A for each particle
takes high computational overhead

• Instead, (approximation)
– Compute the average 𝐸 𝑝?,@,A for particles

in a cell
– Use the value for all particles in the cell

23

The Average, Expected Number of
Neighbors of particles in a cell 𝐶C

24

𝑬 𝑪𝒒 =
𝟏

𝑽 𝑪𝒒
∗ F F F 𝑬 𝒑𝒙,𝒚,𝒛 𝒅𝒙

𝒍

𝟎
𝒅𝒚

𝒍

𝟎
𝒅𝒛

𝒍

𝟎

- 𝑙 is the length of a cell along each dimension
- 𝒑𝒙,𝒚,𝒛 is a particle positioned at (x, y, z) on a local coordinate space in 𝐶C

Expensive to compute at runtime

25

=
𝟏

𝑽 𝑪𝒒
∗ 	(𝒏 𝑪𝒊 ∗

𝑫 𝑪𝒒, 𝑪𝒊
𝑽 𝑪𝒊

�

𝒊

𝑬 𝑪𝒒 =
𝟏

𝑽 𝑪𝒒
∗ F F F 𝑬 𝒑𝒙,𝒚,𝒛 𝒅𝒙

𝒍

𝟎
𝒅𝒚

𝒍

𝟎
𝒅𝒛

𝒍

𝟎

𝐷 𝐶C, 𝐶L = 	F F F 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑆 𝑃?,@,A, 𝜀 , 𝐶L 𝑑𝑥
W

X
𝑑𝑦

W

X
𝑑𝑧	

W

X

The Average, Expected Number of
Neighbors of particles in a cell 𝐶C

• Pre-compute 𝐷 𝐶C, 𝐶L
– The value depends on the ratio between 𝑙

and 𝜀 values
– 𝑙 and 𝜀 are not frequently changed by user
– Use the Monte-Carlo method with many

samples (e.g., 1 M)

• Use look-up table at runtime

26

𝐷 𝐶C, 𝐶L = 	F F F 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑆 𝑃?,@,A, 𝜀 , 𝐶L 𝑑𝑥
W

X
𝑑𝑦

W

X
𝑑𝑧	

W

X

The Average, Expected Number of
Neighbors of particles in a cell 𝐶C

Validation

27

• Correlation = 0.97
• Root Mean Square Error (RMSE) = 3.7

Chicken-and-Egg Problem

28

𝑺 𝑩 = 𝒏𝑩𝑺𝒑 + 𝑺𝒏 (𝒏′𝒑𝒊

�

𝒑𝒊∈𝑩

+ 𝑺𝑨𝒖𝒙

Expected number
of neighbors

Auxiliary space to cover
the estimation error

𝑺𝑨𝒖𝒙 = 𝟑. 𝟕 ∗ 𝒏𝑩𝑺𝒏

RMSE

Chicken-and-Egg Problem

29

𝑺 𝑩 = 𝒏𝑩𝑺𝒑 + 𝑺𝒏 (𝒏′𝒑𝒊

�

𝒑𝒊∈𝑩

+ 𝑺𝑨𝒖𝒙

Expected number
of neighbors

Auxiliary space to cover
the estimation error

𝑺𝑨𝒖𝒙 = 𝟑. 𝟕 ∗ 𝒏𝑩𝑺𝒏

RMSE

Results

• Testing Environment
–Two hexa-core CPUs
–192 GB main memory (CPU side)
–One GPU (GeForce GTX 780) with 3 GB
video memory

30

Results

31

Up to 65.6 M Particles
Maximum data size: 13 GB

Ours

Map-GPU

NVIDIA mapped memory Tech
- Map CPU memory space
into GPU memory address space

32

Up to 32.7 M Particles
Maximum data size: 16 GB

15.8 M Particles
Maximum data size: 6 GB

Results

33

12 CPU cores

A CPU core
12 CPU cores
+One GPU

Map-GPU Our method
Up to 26 X

Up to 51 X

Up to 8.4 X Up to 6.3 X

Conclusion

• Proposed an out-of-core ε-NN
algorithm for particle-based fluid
simulation
– Utilize heterogeneous computing resources
– Utilize GPUs in out-of-core manner
– Propose hierarchical work distribution

method

34

Conclusion

• Proposed an out-of-core ε-NN
algorithm for particle-based fluid
simulation

• Presented a novel, memory estimation
method
– Based on expected number of neighbors

35

Conclusion

• Proposed an out-of-core ε-NN
algorithm for particle-based fluid
simulation

• Presented a novel, memory estimation
method

• Handled a large number of particles
• Achieved much higher performance

compared with a naïve OOC-GPU
approach

36

Future Work

• Extend to support multi-GPUs

• Improve the parallelization efficiency
by employing an optimization-based
approach

• Extend to other applications

37

Thanks!

38

Any questions?
(bluekdct@gmail.com)

Project homepage:
http://sglab.kaist.ac.kr/OOCNNS
- Benchmark scenes are available in the homepage
- Source code will be available in the homepage

Benefits of Our Memory
Estimation Model

• Fixed space VS Ours

39

Benefits of Hierarchical
Workload Distribution

• Larger block size shows a better
performance
– E.g., using 323 and 643 block sizes takes 22%

and 30% less processing time in GPU than
using 163 blocks on average

40

Benefits of Hierarchical
Workload Distribution

• But, the maximal block size varies
depending on the benchmarks and
region of the scene

• Compared manually set fixed block
size based on our estimation model,
hierarchical approaches shows 33%
higher performance on average

41

