Out-of-Core Proximity Computation for Particle-based Fluid Simulation

HPG 2014
Presenter:
Duksu Kim Myung-Bae Son
Young J. Kim Jeong-Mo Hong Sung-Eui Yoon

Particle-based Fluid Simulation

Motivation

- To meet the higher realism, a large number of particles are required - Tens of millions particles
- In-core algorithm (previous work)
- Manage all data in GPU's video memory
- Can handle up to 5 M particles with 1 GB memory for particle-based fluid simulation
- Recent commodity GPUs have 1 ~ 3 GB memories (up to 12 GB)

Contributions

- Propose out-of-core methods that utilize heterogeneous computing resources and process neighbor search for a large number of particles
- Propose a memory footprint estimation method to identify a maximal work unit for efficient out-ofcore processing

Result

Up to 65.6 M Particles Maximum data size: 13 GB

NVIDIA mapped memory Tech.

- Map CPU memory space into GPU memory address space

- Two hexa-core CPUs (192 GB Mem.)
- One GPU (3 GB Mem.)

Particle-based Fluid Simulation

Particle-based Fluid Simulation

Preliminary: Grid-based ε-NN

Preliminary: Grid-based ε-NN

In-Core Algorithm (Data<Video Memory)

Main memory (CPU side)

 GPU

- Grid data
- Particle data

Video memory

Assume:
Main memory is enough

- can equip up to 4 TB

$$
\varepsilon-N N
$$

Data > Video Memory

Out-of-Core Algorithm

Main memory (CPU side)

GPU

- Sub-grid(Block) data
- Particle data

Results

Boundary Region

- Required data in adjacent blocks
- Inefficient to handle in an out-of-core manner

Boundary Region

- Required data in adjacent blocks
- Inefficient to handle in an out-of-core manner
- Multi-core CPUs handle the boundary region
- CPU (main) memory contain all required data
- Ratio of boundary regions is usually much smaller than inner regions

How to Divide the Grid ?

How to Divide the Grid ?

- Goal: Find the largest block that fits to the GPU memory
- Improve parallel computing efficiency
- Process a large number of particles at once
- Minimize data transfer overhead
- Reduce the boundary region
- As the ratio of boundary region is increased, the workload of CPU is increased

Required Memory Size for processing a block, B

Hierarchical Work Distribution

Workload tree

Chicken-and-Egg Problem

Chicken-and-Egg Problem

$$
\boldsymbol{S}(\boldsymbol{B})=n_{B} S_{p}+S_{n} \sum_{p_{i} \in B} n_{p_{i}}
$$

Our approach:
Estimation the number of neighbors for particles

Problem Formulation

- Assumption

- Particles are uniformly distributed in a cell
- Idea
- For a particle, the number of neighbors in a cell is proportional to the overlap volume between the search sphere and the cell weighted by the number of particles in the cell

Expected Number of Neighbors of a particle p located at (x, y, z)

$E\left(p_{x, y, z}\right) \sum_{i} n\left(C_{i}\right) * \frac{\operatorname{Overlap}\left(S\left(p_{x, y, z}, \varepsilon\right), C_{i}\right)}{V\left(C_{i}\right)}$

- $\boldsymbol{C}_{\boldsymbol{i}}$: cells of $\boldsymbol{p}_{x, y, z}$ and its adjacency cells
- $\boldsymbol{n}\left(\boldsymbol{C}_{\boldsymbol{i}}\right)$: the number of particles in the cell
- Overlap $\left(\boldsymbol{S}\left(\boldsymbol{p}_{x, y, z}, \boldsymbol{\varepsilon}\right), \boldsymbol{C}_{i}\right)$: overlap volume between them
- $\boldsymbol{V}\left(\boldsymbol{C}_{\boldsymbol{i}}\right)$: volume of the cell

Problem Formulation

- Compute $E\left(p_{x, y, z}\right)$ for each particle takes high computational overhead
- Instead, (approximation)
- Compute the average $E\left(p_{x, y, z}\right)$ for particles in a cell
- Use the value for all particles in the cell

The Average, Expected Number of Neighbors of particles in a cell C_{q}

Expensive to compute at runtime

$E\left(C_{q}\right)=\frac{1}{V\left(C_{q}\right)} * \int_{0}^{l} \int_{0}^{l} \int_{0}^{l} E\left(p_{x, y, z}\right) d x d y d z$

- l is the length of a cell along each dimension
- $\boldsymbol{p}_{x, y, z}$ is a particle positioned at (x, y, z) on a local coordinate space in C_{q}

The Average, Expected Number of Neighbors of particles in a cell C_{q}

$$
\begin{gathered}
\boldsymbol{E}\left(\boldsymbol{C}_{\boldsymbol{q}}\right)=\frac{1}{\boldsymbol{V}\left(\boldsymbol{C}_{\boldsymbol{q}}\right)} * \int_{0}^{l} \int_{0}^{l} \int_{0}^{l} \boldsymbol{E}\left(\boldsymbol{p}_{x, y, z}\right) d x d y d \boldsymbol{z} \\
=\frac{1}{\boldsymbol{V}\left(\boldsymbol{C}_{\boldsymbol{q}}\right)} * \sum_{i} n\left(\boldsymbol{C}_{\boldsymbol{i}}\right) * \frac{\boldsymbol{D}\left(\boldsymbol{C}_{\boldsymbol{q}}, \boldsymbol{C}_{\boldsymbol{i}}\right)}{\boldsymbol{V}\left(\boldsymbol{C}_{\boldsymbol{i}}\right)} \\
D\left(C_{q}, C_{i}\right)=\int_{0}^{l} \int_{0}^{l} \int_{0}^{l} 0 \operatorname{verlap}\left(S\left(P_{x, y, z}, \varepsilon\right), c_{i}\right) d x d y d z
\end{gathered}
$$

The Average, Expected Number of Neighbors of particles in a cell C_{q}

- Pre-compute $D\left(C_{q}, C_{i}\right)$
- The value depends on the ratio between l and ε values
$-l$ and ε are not frequently changed by user - Use the Monte-Carlo method with many samples (e.g., 1 M)
- Use look-up table at runtime

$$
D\left(C_{q}, C_{i}\right)=\int_{0}^{l} \int_{0}^{l} \int_{0}^{l} O \operatorname{verlap}\left(S\left(P_{x, y, z}, \varepsilon\right), C_{i}\right) d x d y d z
$$

Validation

Ghicken-and-Egg Preblem

Expected number of neighbors

Chicken-and-Egg Problem

Auxiliary space to cover the estimation error

$$
S_{A u x}=3.7 * n_{B} S_{n}
$$

RMSE

Results

- Testing Environment
- Two hexa-core CPUs
- 192 GB main memory (CPU side)
-One GPU (GeForce GTX 780) with 3 GB video memory

Results

Results

Up to 26 X
 Map-GPU $\xrightarrow{\text { Op to } 26 x}$ Our method

Conclusion

- Proposed an out-of-core ε-NN algorithm for particle-based fluid simulation
- Utilize heterogeneous computing resources
- Utilize GPUs in out-of-core manner
- Propose hierarchical work distribution method

Conclusion

- Proposed an out-of-core ε-NN algorithm for particle-based fluid simulation
- Presented a novel, memory estimation method
- Based on expected number of neighbors

Conclusion

- Proposed an out-of-core ε-NN algorithm for particle-based fluid simulation
- Presented a novel, memory estimation method
- Handled a large number of particles
- Achieved much higher performance compared with a naïve OOC-GPU approach

Future Work

- Extend to support multi-GPUs
- Improve the parallelization efficiency by employing an optimization-based approach
- Extend to other applications

Thanks!

Any questions?
 (bluekdct@gmail.com)

Project homepage:
http://sglab.kaist.ac.kr/OOCNNS

- Benchmark scenes are available in the homepage
- Source code will be available in the homepage

Benefits of Our Memory Estimation Mode!

- Fixed space VS Ours

Benefits of Hierarchical Workload Distribution

- Larger block size shows a better performance
- E.g., using 32^{3} and 64^{3} block sizes takes 22% and 30% less processing time in GPU than using 16^{3} blocks on average

Benefits of Hierarchical Workload Distribution

- But, the maximal block size varies depending on the benchmarks and region of the scene
- Compared manually set fixed block size based on our estimation model, hierarchical approaches shows 33\% higher performance on average

