
Out-of-Core Proximity Computation 
for Particle-based Fluid Simulation

Duksu Kim   Myung-Bae Son
Young J. Kim   Jeong-Mo Hong   Sung-Eui Yoon

HPG 2014
Presenter:



Particle-based Fluid Simulation
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Motivation

• To meet the higher realism, a large 
number of particles are required
– Tens of millions particles

• In-core algorithm (previous work)
–Manage all data in GPU’s video memory
– Can handle up to 5 M particles with 1 GB 

memory for particle-based fluid simulation

• Recent commodity GPUs have 1 ~ 3 
GB memories (up to 12 GB)
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Contributions

• Propose out-of-core methods that 
utilize heterogeneous computing 
resources and process neighbor search 
for a large number of particles

• Propose a memory footprint 
estimation method to identify a 
maximal work unit for efficient out-of-
core processing
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Result
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Up to 65.6 M Particles
Maximum data size: 13 GB

Ours

Map-GPU

NVIDIA mapped memory Tech.
- Map CPU memory space
into GPU memory address space

- Two hexa-core CPUs (192 GB Mem.)
- One GPU (3 GB Mem.)



Particle-based Fluid Simulation
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Neighbor search

Compute force

Move particles 



Particle-based Fluid Simulation
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Neighbor search

Compute force

Move particles 

ε

Performance bottleneck
- Takes 60~80% of simulation computation time

ε-Nearest Neighbor (ε-NN)



Preliminary: Grid-based ε-NN
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Preliminary: Grid-based ε-NN
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Main memory (CPU side)
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GPU

Video memory

- Grid data
- Particle data

ε-NN

Results

In-Core Algorithm
(Data<Video Memory)

Assume:
Main memory is enough
- can equip up to 4 TB



Main memory (CPU side)
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GPU

Video memory

- Grid data
- Particle data

ε-NN

Results

Data > Video Memory



Main memory (CPU side)
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GPU

Video memory

- Sub-grid(Block) data
- Particle data

ε-NN

Results

Out-of-Core Algorithm



Boundary Region
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• Required data in adjacent blocks
• Inefficient to handle in an out-of-core 

manner



Boundary Region

• Required data in adjacent blocks
• Inefficient to handle in an out-of-core 

manner
• Multi-core CPUs handle the boundary 

region
– CPU (main) memory contain all required 

data
– Ratio of boundary regions is usually much 

smaller than inner regions
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How to Divide the Grid ?
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How to Divide the Grid ?

• Goal: Find the largest 
block that fits to the GPU 
memory
– Improve parallel computing 

efficiency
• Process a large number of 

particles at once
• Minimize data transfer 

overhead

– Reduce the boundary region
• As the ratio of boundary 

region is increased, the 
workload of CPU is increased
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Required Memory Size
for processing a block, B
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𝑺 𝑩 = 𝒏𝑩𝑺𝒑 + 𝑺𝒏 ( 𝒏𝒑𝒊
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Data size
for storing a particle

Data size
for storing a neighbor info.

# of particles in B
# of neighbor particles
for the particle i (pi)



Hierarchical Work Distribution
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a b

d…

…
Front nodes

Workload tree
a b

c

d

𝑺 𝑩 < GPU memory

c

- # of particles in the block
- # of neighbors in the block



Chicken-and-Egg Problem
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𝑺 𝑩 = 𝒏𝑩𝑺𝒑 + 𝑺𝒏 ( 𝒏𝒑𝒊

�
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# of neighbor particles
for the particle i, pi

Data size
for storing a particle

Data size
for storing a neighbor info.

# of particles in B



Chicken-and-Egg Problem
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𝑺 𝑩 = 𝒏𝑩𝑺𝒑 + 𝑺𝒏 ( 𝒏𝒑𝒊
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Our approach:
Estimation the number of neighbors for particles



Problem Formulation
• Assumption
– Particles are uniformly distributed in a cell

• Idea
– For a particle, the number of neighbors in a 

cell is proportional to the overlap volume 
between the search sphere and the cell 
weighted by the number of particles in the 
cell
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Expected Number of Neighbors 
of a particle p located at (x, y, z)
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- 𝑪𝒊 : cells of 𝒑𝒙,𝒚,𝒛 and its adjacency cells
- 𝒏 𝑪𝒊 : the number of particles in the cell
- 𝑶𝒗𝒆𝒓𝒍𝒂𝒑 𝑺(𝒑𝒙,𝒚,𝒛, 𝜺 , 𝑪𝒊) : overlap volume between them
- 𝑽 𝑪𝒊 : volume of the cell

𝑬 𝒑𝒙,𝒚,𝒛 =(𝒏 𝑪𝒊 ∗
𝑶𝒗𝒆𝒓𝒍𝒂𝒑 𝑺(𝒑𝒙,𝒚,𝒛, 𝜺 , 𝑪𝒊)

𝑽(𝑪𝒊)
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𝒊



Problem Formulation

• Compute 𝐸 𝑝?,@,A for each particle 
takes high computational overhead

• Instead, (approximation)
– Compute the average 𝐸 𝑝?,@,A for particles 

in a cell
– Use the value for all particles in the cell
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The Average, Expected Number of 
Neighbors of particles in a cell 𝐶C
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𝑬 𝑪𝒒 =
𝟏

𝑽 𝑪𝒒
∗ F F F 𝑬 𝒑𝒙,𝒚,𝒛 𝒅𝒙

𝒍

𝟎
𝒅𝒚

𝒍

𝟎
𝒅𝒛

𝒍

𝟎

- 𝑙 is the length of a cell along each dimension
- 𝒑𝒙,𝒚,𝒛 is a particle positioned at (x, y, z) on a local coordinate space in 𝐶C

Expensive to compute at runtime
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=
𝟏

𝑽 𝑪𝒒
∗ 	( 𝒏 𝑪𝒊 ∗

𝑫 𝑪𝒒, 𝑪𝒊
𝑽 𝑪𝒊
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𝑬 𝑪𝒒 =
𝟏

𝑽 𝑪𝒒
∗ F F F 𝑬 𝒑𝒙,𝒚,𝒛 𝒅𝒙
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𝐷 𝐶C, 𝐶L = 	F F F 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑆 𝑃?,@,A, 𝜀 , 𝐶L 𝑑𝑥
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The Average, Expected Number of 
Neighbors of particles in a cell 𝐶C



• Pre-compute 𝐷 𝐶C, 𝐶L
– The value depends on the ratio between 𝑙

and 𝜀 values
– 𝑙 and 𝜀 are not frequently changed by user
– Use the Monte-Carlo method with many 

samples (e.g., 1 M)

• Use look-up table at runtime
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𝐷 𝐶C, 𝐶L = 	F F F 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑆 𝑃?,@,A, 𝜀 , 𝐶L 𝑑𝑥
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The Average, Expected Number of 
Neighbors of particles in a cell 𝐶C



Validation
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• Correlation = 0.97
• Root Mean Square Error (RMSE)  = 3.7



Chicken-and-Egg Problem
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𝑺 𝑩 = 𝒏𝑩𝑺𝒑 + 𝑺𝒏 ( 𝒏′𝒑𝒊
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+ 𝑺𝑨𝒖𝒙

Expected number
of neighbors

Auxiliary space to cover 
the estimation error

𝑺𝑨𝒖𝒙 = 𝟑. 𝟕 ∗ 𝒏𝑩𝑺𝒏

RMSE



Chicken-and-Egg Problem
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𝑺 𝑩 = 𝒏𝑩𝑺𝒑 + 𝑺𝒏 ( 𝒏′𝒑𝒊
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+ 𝑺𝑨𝒖𝒙

Expected number
of neighbors

Auxiliary space to cover 
the estimation error

𝑺𝑨𝒖𝒙 = 𝟑. 𝟕 ∗ 𝒏𝑩𝑺𝒏

RMSE



Results

• Testing Environment
–Two hexa-core CPUs
–192 GB main memory (CPU side)
–One GPU (GeForce GTX 780) with 3 GB 
video memory 
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Results
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Up to 65.6 M Particles
Maximum data size: 13 GB

Ours

Map-GPU

NVIDIA mapped memory Tech
- Map CPU memory space
into GPU memory address space
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Up to 32.7 M Particles
Maximum data size: 16 GB

15.8 M Particles
Maximum data size: 6 GB



Results
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12 CPU cores

A CPU core
12 CPU cores
+One GPU

Map-GPU Our method
Up to 26 X

Up to 51 X

Up to 8.4 X Up to 6.3 X



Conclusion

• Proposed an out-of-core ε-NN 
algorithm for particle-based fluid 
simulation
– Utilize heterogeneous computing resources
– Utilize GPUs in out-of-core manner
– Propose hierarchical work distribution 

method
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Conclusion

• Proposed an out-of-core ε-NN 
algorithm for particle-based fluid 
simulation

• Presented a novel, memory estimation 
method
– Based on expected number of neighbors
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Conclusion

• Proposed an out-of-core ε-NN 
algorithm for particle-based fluid 
simulation

• Presented a novel, memory estimation 
method

• Handled a large number of particles
• Achieved much higher performance 

compared with a naïve OOC-GPU 
approach
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Future Work

• Extend to support multi-GPUs

• Improve the parallelization efficiency 
by employing an optimization-based 
approach

• Extend to other applications

37



Thanks!
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Any questions?
(bluekdct@gmail.com)

Project homepage:
http://sglab.kaist.ac.kr/OOCNNS
- Benchmark scenes are available in the homepage
- Source code will be available in the homepage



Benefits of Our Memory 
Estimation Model

• Fixed space VS Ours
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Benefits of Hierarchical 
Workload Distribution

• Larger block size shows a better 
performance
– E.g., using 323 and 643 block sizes takes 22% 

and 30% less processing time in GPU than 
using 163 blocks on average
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Benefits of Hierarchical 
Workload Distribution

• But, the maximal block size varies 
depending on the benchmarks and 
region of the scene 

• Compared manually set fixed block 
size based on our estimation model, 
hierarchical approaches shows 33% 
higher performance on average
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