
Reduced Precision Hardware for
Ray Tracing

Sean Keely

University of Texas, Austin

Question
Why don’t GPU’s accelerate ray tracing?

Real time ray tracing needs very high
ray rate

Example Scene: 3 area lights + AO/GI

64 rays/pixel, 1080p, 30Hz -> 4 Billion Rays/s

Real time ray tracing needs very high
ray rate

Example Scene: 3 area lights + AO/GI

64 rays/pixel, 1080p, 30Hz -> 4 Billion Rays/s

Software approaches give 80-400M Rays/s

Single precision ASIC’s will be large

Approx. 4 Tflops Trace + 2 Tflops Intersect + ?? Shading

Will need roughly the die area of a high end GPU for a
trace & intersect co-processor

Previous work competes with current
GPU’s

 STRaTA, D. Kopta… 2013

− MIMD configurable pipeline, avoids divergence
penalty

− Repurpose L2 as ray cache

 SGRT, W. Lee… 2014

− MIMD co-processor design

− Most recent work addresses the performance cost
of co-processor design

Goal: Accelerate ray tracing in a GPU,
not next to one

 Add high performance BVH traversal
acceleration to current GPU architecture
− MIMD traversal

− SIMD programs

 Constraints: low impact, not a co-processor
− small die area

− low power

− low bandwidth

How: Reduced Precision and Integration

 4 Billion RPS needs ~24W just for multiplies in
traversal.

− Can be reduced to ~1W with reduced precision.

 One off-chip data access is ~100x more energy
than a FMA.

− Reduced precision saves here too!

 Don’t build new registers, cache, wires…

− Integrate to a GPU and get this for free!

Reduced Precision BVH Traversal

Robust Ray-AABB Test

TF

TN

MISS

TN>TF : Miss Box TF

TN

TF>TN : Intersect Box

HIT

Robust Ray-AABB Test

Ambiguity if TF≈TN.
Need TN>TF+Ɛ, Ɛ=2*ULP(TF) to declare a miss [T. Ize, ‘13].

TF ≈ TN

??

TF

TN

MISS

TN>TF : Miss Box TF

TN

TF>TN : Intersect Box

HIT

Hit or Miss?

Hit or Miss?

High Precision Intersection

Hit or Miss?

Low Precision Intersection

Hit or Miss?

Hit or Miss?

Hit or Miss?

Minimize the effective box size

Seek P such that

Traversal Point Update

Problems

 Computing TN needs multiplies

 Unbounded box size

 Multiple applications

Gap due to
finite precision.

Traversal Point Update

f Precision of update procedure

S Maximum parent-child edge ratio

C Maximum internal parent-child offset

Gap due to
finite precision.

Traversal Point Update

 5 bit child boxes -> S=32

− Need 8 bit arithmetic to guarantee

 Can actually use just 1 bit!

− Incorrectly taken paths are quickly aborted

− Much smaller than even 8 bit arithmetic

 Reduces precision of the adds and divides as well

− No need to share divider, replaced with LUT.

Reduced Precision Traversal Unit

 Fixed function traversal unit implements:

1. Two 1 bit precision traversal point updates

2. Two 5 bit precision robust Ray-AABB tests

3. Near child detection

4. Single bit traversal stack

5. …

Reduced Precision Traversal Unit

 Fixed function traversal unit implements:

1. Two 1 bit precision traversal point updates

2. Two 5 bit precision robust Ray-AABB tests

3. Near child detection

4. Single bit traversal stack

5. …

Reduced Precision Traversal Unit

 Fixed function traversal unit implements:

1. Two 1 bit precision traversal point updates

2. Two 5 bit precision robust Ray-AABB tests

3. Near child detection

4. Single bit traversal stack

5. …

 A fully pipelined traversal unit is roughly 6%
the area of a single SIMD FPU in a current
GPU.

BVH Compression

 Traversal inputs drop to 5 bits early on

− Can’t distinguish all boxes

 Opportunity to save bandwidth!

 BVH boxes are quantized to 5 bits

− 12 byte node format holding two boxes

GPU Integration & Scheduling

Schedule to minimize off chip traffic

 Treelet scheduling [T. Aila,... ‘10]

− Smaller is better…but for queuing traffic.

 Stay out of memory!

− On chip queuing.

 Lots of rays

− Improve odds of reuse.

We can use everything here

Registers are great for rays

 64 byte SIMD registers

 Random access

 Ultra high bandwidth

Registers are great for rays

 64 byte ray state

 Store one ray across one register

 All queues are linked lists of registers

MIMD traversal shares with SIMD core.

Queue data stays on chip

 Single global resource

 Has remote logic capability already

Queue data stays on chip

Queue data stays on chip

 One per core

 40% used for queues

Queue rays when data is expensive

 Add “Hit-Only” load type

 Cache reserved for scene data

Queue based intersect and shading

Queue based intersect and shading

 Register Transpose units ease transitioning
between MIMD and SIMD operation

Ray tracing fits in current GPUs

Evaluation

Experimental setup

Crown: 4.9M Triangles Hairball: 2.9M Triangles

Powerplant: 12.8M Triangles Vegetation: 1.1M Triangles

Two simulators measure key metrics

Reduced precision has low costs
Compressed BVH: 7% more work (usually)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Hairball Vegetation Powerplant Crown

N
o

rm
al

iz
e

d
 t

ra
ve

rs
al

 s
te

p
s

p
e

r
ra

y

Baseline Compressed BVH 8-bit Updates 1-bit Updates

Reduced precision has low costs
Reduced Precision Traversal: 3% more work

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Hairball Vegetation Powerplant Crown

N
o

rm
al

iz
e

d
 t

ra
ve

rs
al

 s
te

p
s

p
e

r
ra

y

Baseline Compressed BVH 8-bit Updates 1-bit Updates

Reduced precision has low costs
1-bit Traversal Point Update: 1-2% more work

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Hairball Vegetation Powerplant Crown

N
o

rm
al

iz
e

d
 t

ra
ve

rs
al

 s
te

p
s

p
e

r
ra

y

Baseline Compressed BVH 8-bit Updates 1-bit Updates

Total overhead is small
10-15% (usually)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Hairball Vegetation Powerplant Crown

N
o

rm
al

iz
e

d
 t

ra
ve

rs
al

 s
te

p
s

p
e

r
ra

y

Baseline Compressed BVH 8-bit Updates 1-bit Updates

Off chip traffic is in the real time range
Simulated workload set to 30 frames per second

219 GB/s

282 GB/s

123 GB/s

231 GB/s

0

1

2

3

4

5

6

7

8

9

10

G
B

 o
ff

 c
h

ip
 t

ra
ff

ic

Hairball Vegetation Powerplant Crown

Traversal Limited Bandwidth Limited

Simulated ray rate
Average ray rate: 3.4 Billion rays/s

3711

2248

3580

3964

0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
ill

io
n

 R
ay

s
P

e
r

Se
co

n
d

Hairball Vegetation Powerplant Crown

Current Software Performance

Conclusion

 Reduced precision yields surprising
performance benefits…roughly 20x.

 Hardware ray tracing acceleration can be a
lightweight feature of modern GPUs.

Acknowledgements

 Samuli Laine for use of Vegetation and Hairball

 Martin Lubich & Intel for use of Crown

 Daniel Kopta for assistance with comparisons
in the paper

 UT Graphics group and others for many useful
discussions

Questions?

Ground Truth

Incorrectly taken paths abort quickly

Incorrectly taken paths abort quickly

Incorrectly taken paths abort quickly

Incorrectly taken paths abort quickly

Incorrectly taken paths abort quickly

