
High-Performance Delaunay
Triangulation for Many-Core

Computers

V. Fuetterling and C. Lojewski

Contact: valentin.fuetterling@itwm.fhg.de

Basic property of the Delaunay
triangulation (DT)

• No other points inside the circumcircle of a
triangle

Applications for the DT

• point location

• path finding

• image processing

• mesh generation

• etc…

Contribution of the talk

• DT implementation for 2D point sets

– Multi-threaded

– High single-threaded performance

– Big data sets

– Results 40-50x faster than previous
implementations

DIFFICULTIES FOR A PARALLEL DT
IMPLEMENTATION

Problem

Looking at previous implementations
CGAL and Triangle

CGAL

• Point-insertion

(www.cgal.org)

Triangle

• Divide-and-conquer
(Dwyer’s algorithm)

(www.cs.cmu.edu/~quake/triangle.html)

CGAL algorithm

CGAL algorithm

CGAL algorithm

CGAL algorithm

CGAL algorithm

CGAL algorithm

CGAL algorithm

CGAL algorithm

Triangle algorithm

Triangle algorithm

Triangle algorithm

Triangle algorithm

Triangle algorithm

Triangle algorithm

Difficulties with parallelization

• CGAL:

– Multiple threads need to read/modify a shared
data structure

• Triangle:

– D&C: Limited parallelism at the start

– Devisive sorting algorithm, problematic for
scalability (compare top-down BVH construction)

Difficulties with parallelization

• CGAL:

– Multiple threads need to read/modify a shared
data structure

• Triangle:

– D&C: Limited parallelism at the start

– Devisive sorting algorithm, problematic for
scalability (compare top-down BVH construction)

THE LINEAR QUAD-TREE
(WITH A TWIST)

Our solution

Linear Quad-tree

• Concept known from BVH construction
algorithms (linear oct-tree):
– HLBVH [Pantaleoni, Luebke, 2010]

– AAC [Gu, He, Fatahaliam, Blelloch, 2013]

• Basic idea:
Morton codes + (Radix) sort -> memory layout
of points corresponds to depth-first traversal
of quad-tree

Linear Quad-tree
1. Define grid

2. Compute Morton codes

x1

y1

y0

1 3

x0

4 7

y1

x2

8 11

x2

12 15 Memory

Implicit Quad-tree

3. (Radix) sort

x0 x1 x2

y0

y1

y2

Linear Quad-tree
1. Define grid

2. Compute Morton codes

x1

y1

y0

1 3

x0

4 7

y1

x2

8 11

x2

12 15 Memory

Implicit Quad-tree

3. (Radix) sort

x0 x1 x2

y0

y1

y2

Linear Quad-tree
1. Define grid

2. Compute Morton codes

x1

y1

y0

1 3

x0

4 7

y1

x2

8 11

x2

12 15 Memory

Implicit Quad-tree

3. (Radix) sort

x0 x1 x2

y0

y1

y2

Twist: Morton codes directly from
floating-point representation

Quad-tree structure generated by
floating-point Morton codes (LFQT)

0

-1

1

0 -1 1

X-axis

Y-axis

Quad-tree structure generated by
floating-point Morton codes (LFQT)

0

-1

1

0 -1 1

X-axis

Y-axis

Advantages of LFQT compared to
regular linear Quad-tree

• Bijectivity: code <-> value

– ‘infinite’ resolution, i.e. one exclusive grid cell for
every possible point

– Reduced memory footprint

• One fixed grid for every possible data set

• Rigorous numerical structure, used for
adaptive precision arithmetic -> see paper

AN EFFICIENT, PARALLEL DT
IMPLEMENTATION

The algorithm

Algorithm phases

Input
Points

Morton
Code

Radix
Sort

Top
Subdivide
(global)

Subdivide
/ Merge
(local)

Top
Merge
(global)

DT

Full parallelism

Limited parallelism

Global synchronization

Algorithm phases

Input
Points

Morton
Code

Radix
Sort

Top
Subdivide
(global)

Subdivide
/ Merge
(local)

Top
Merge
(global)

Done

Full parallelism

Limited parallelism

Global synchronization

Subdivide method

Input: Array of points
from lidx to ridx

Subdivide method

Single point or only
degenerate points left?

Subdivide method

Two points left?

Subdivide method

Find most significant bit
which is different

Subdivide method

Find position where
the bit changes

Subdivide method

Recurse subdivision and
merge triangulations

HOW DOES THE LFQT IMPACT DT
PERFORMANCE?

Evaluation

Experimental Setup

• Dual-socket Intel Xeon E5-2670 @ 3.0 GHz

– 16 cores / 32 threads, 64 GB DDR3

• fqDel (our implementation)

• Triangle 1.6

• CGAL 4.3

• Random point distributions (fixed seed)

– Uniform, Cluster, Grid, Circle and Spiral

Single-threaded performance:
fqDel vs. CGAL vs. Triangle

Single-threaded performance:
fqDel vs. CGAL vs. Triangle

fqDel performance scaling with
input size

Multi-threading:
fqDel performance scaling with

thread count

Run-time distribution:
How much time is spent in each part

of fqDel

Parallel GPU alternatives (CUDA)

• GPU-DT [Qi, Cao, Tan ‘12]
– Digital Voronoi diagram + edge flipping

• gDel2D [Cao, Nanjappa, Gao, Tan ‘14]
– Parallel point-insertion

Benchmarks with Geforce GTX 580

Note: both use double-precision

fqDel vs. GPU alternatives

fqDel vs. GPU alternatives

Summary

• Efficient DT implementation for 2D point sets

– Results 40-50x faster than previous CPU
implementations

– Considerably faster than GPU implementations

Thank you!

