High-Performance Delaunay Triangulation for Many-Core Computers

V. Fuetterling and C. Lojewski

Basic property of the Delaunay triangulation (DT)

- No other points inside the circumcircle of a triangle

Applications for the DT

- point location
- path finding
- image processing
- mesh generation
- etc...

Contribution of the talk

- DT implementation for 2D point sets
- Multi-threaded
- High single-threaded performance
- Big data sets

Results 40-50x faster than previous implementations

Problem

DIFFICULTIES FOR A PARALLEL DT IMPLEMENTATION

Looking at previous implementations CGAL and Triangle

CGAL

- Point-insertion
(www.cgal.org)

Triangle

- Divide-and-conquer (Dwyer's algorithm)
(www.cs.cmu.edu/~quake/triangle.html)

CGAL algorithm

-

CGAL algorithm

Triangle algorithm

Triangle algorithm

Triangle algorithm

Triangle algorithm

Triangle algorithm

Triangle algorithm

Difficulties with parallelization

- CGAL:
- Multiple threads need to read/modify a shared data structure
- Triangle:
- D\&C: Limited parallelism at the start
- Devisive sorting algorithm, problematic for scalability (compare top-down BVH construction)

Difficulties with parallelization

- CGAL:
- Multiple threads need to read/modify a shared data structure
- Triangle:
- D\&C: Limited parallelism at the start
- Devisive sorting algorithm, problematic for scalability (compare top-down BVH construction)

Our solution

THE LINEAR QUAD-TREE (WITH A TWIST)

Linear Quad-tree

- Concept known from BVH construction algorithms (linear oct-tree):
- HLBVH [Pantaleoni, Luebke, 2010]
- AAC [Gu, He, Fatahaliam, Blelloch, 2013]
- Basic idea:

Morton codes + (Radix) sort -> memory layout of points corresponds to depth-first traversal of quad-tree

Linear Quad-tree

3. (Radix) sort

Linear Quad-tree

2. Compute Morton codes

3. (Radix) sort

Linear Quad-tree

1. Define grid

2. Compute Morton codes

3. (Radix) sort

Twist: Morton codes directly from floating-point representation

Sign Exponent Mantissa

Quad-tree structure generated by floating-point Morton codes (LFQT)

Quad-tree structure generated by

 floating-point Morton codes (LFQT)

Advantages of LFQT compared to

 regular linear Quad-tree- Bijectivity: code <-> value
- 'infinite' resolution, i.e. one exclusive grid cell for every possible point
- Reduced memory footprint
- One fixed grid for every possible data set
- Rigorous numerical structure, used for adaptive precision arithmetic -> see paper

The algorithm
AN EFFICIENT, PARALLEL DT IMPLEMENTATION

Algorithm phases

\longrightarrow
Full parallelism
Limited parallelism
\longrightarrow Global synchronization

Algorithm phases

\longrightarrow
Full parallelism
Limited parallelism
\longrightarrow Global synchronization

Subdivide method

Input: Array of points from lidx to ridx

```
Algorithm 1 Subdivision of the floating point quad-tree.
Subdivide(lidx, ridx)
    if points[lidx] is equal to points[ridx -1\(]\) then
    Decode points lidx to ridx -1
        return Partition with single point lidx
    else if \(\operatorname{rid} x-l i d x\) is equal to 2 then
        Decode points lidx and lidx +1
        return Partition with points lidx and lidx +1
    else
        \(l \leftarrow \operatorname{lid} x\)
        \(r \leftarrow \operatorname{rid} x-1\)
        level \(\leftarrow \operatorname{BSR}(\) points \([l] \oplus\) points \([r])\)
        mask \(\leftarrow\) Shift left 1 by level
        while not (points[ \(l+1]\) \& mask) do
            \(m \leftarrow(l+r) / 2\)
            if points \([m]\) \& mask then
                \(r \leftarrow m\)
            else
                    \(l \leftarrow m\)
            end if
        end while
        left \(\leftarrow\) Subdivide \((l i d x, l+1)\)
        right \(\leftarrow \operatorname{Subdivide}(l+1\), rid \(x)\)
        return Merge(left, right)
    end if
```


Subdivide method

Single point or only degenerate points left?

```
Algorithm 1 Subdivision of the floating point quad-tree.
Subdivide(lidx, ridx)
    : if points[lidx] is equal to points[ridx -1\(]\) then
        Decode points lidx to ridx -1
        return Partition with single point lidx
    else if ridx - lidx is equal to 2 then
        Decode points lidx and lidx +1
        return Partition with points \(l i d x\) and \(l i d x+1\)
    else
        \(l \leftarrow \operatorname{lid} x\)
        \(r \leftarrow \operatorname{ridx}-1\)
        level \(\leftarrow \operatorname{BSR}(\) points \([l] \oplus\) points \([r])\)
        mask \(\leftarrow\) Shift left 1 by level
        while not (points[ \(l+1]\) \& mask) do
            \(m \leftarrow(l+r) / 2\)
            if points \([m]\) \& mask then
                \(r \leftarrow m\)
            else
                    \(l \leftarrow m\)
            end if
        end while
        left \(\leftarrow\) Subdivide \((\) lid \(x, l+1)\)
        right \(\leftarrow \operatorname{Subdivide}(l+1\), rid \(x)\)
        return Merge(left, right)
    end if
```


Subdivide method

Two points left?	Algorithm 1 Subdivision of the floating point quad-tree.
	Subdivide(lidx, ridx)
	: if points $[l i d x]$ is equal to points $[\operatorname{rid} x-1]$ then Decode points lidx to ridx -1 return Partition with single point lidx
	```: else if ridx - lidx is equal to 2 then 5: Decode points lidx and lidx +1 6: return Partition with points lidx and lidx+1```
	```else \(l \leftarrow l i d x\) \(r \leftarrow r i d x-1\) level \(\leftarrow \operatorname{BSR}(\) points \([l] \oplus\) points \([r])\) mask \(\leftarrow\) Shift left 1 by level while not (points \([l+1]\) \& mask) do \(m \leftarrow(l+r) / 2\) if points \([m]\) \& mask then \(r \leftarrow m\) else \(l \leftarrow m\) end if end while left \(\leftarrow\) Subdivide \((\) lidx,\(l+1)\) right \(\leftarrow \operatorname{Subdivide}(l+1\), ridx \()\) return \(\operatorname{Merge}(\) left, right) end if```

Subdivide method

Find most significant bit which is different	```Algorithm 1 Subdivision of the floating point quad-tree. Subdivide(lidx, ridx) if points[lidx] is equal to points[ridx -1] then Decode points lidx to ridx -1 return Partition with single point lidx else if \(\operatorname{ridx}-l i d x\) is equal to 2 then Decode points lidx and lidx +1 return Partition with points lidx and \(\operatorname{lidx}+1\) else \(l \leftarrow l i d x\) \(r \leftarrow r i d x-1\)```
	10: \quad level $\leftarrow \operatorname{BSR}($ points $[l] \oplus$ points $[r])$
	```11: mask \(\leftarrow\) Shift left 1 by level while not (points \([l+1]\) \& mask) do \(m \leftarrow(l+r) / 2\) if points \([m]\) \& mask then \(r \leftarrow m\) else \(l \leftarrow m\) end if end while left \(\leftarrow \operatorname{Subdivide}(\) lidx,\(l+1)\) right \(\leftarrow \operatorname{Subdivide}(l+1\), ridx \()\) return Merge(left, right) end if```

## Subdivide method

Find position where the bit changes

```
Algorithm 1 Subdivision of the floating point quad-tree.
Subdivide(lidx, ridx)
 if points \([\) lid \(x]\) is equal to points \([\operatorname{rid} x-1]\) then
 Decode points lidx to ridx -1
 return Partition with single point lidx
 else if \(\operatorname{rid} x-l i d x\) is equal to 2 then
 Decode points lidx and lidx +1
 return Partition with points \(\operatorname{lid} x\) and \(\operatorname{lid} x+1\)
 else
 \(l \leftarrow \operatorname{lid} x\)
 \(r \leftarrow \operatorname{rid} x-1\)
 level \(\leftarrow \operatorname{BSR}(\) points \([l] \oplus\) points \([r])\)
 mask \(\leftarrow\) Shift left 1 by level
 while not (points \([l+1]\) \& mask) do
 \(m \leftarrow(l+r) / 2\)
 if points \([m]\) \& mask then
 \(r \leftarrow m\)
 else
 \(l \leftarrow m\)
 end if
 end while
 left \(\leftarrow\) Subdivide(lidx, \(l+1\))
 right \(\leftarrow \operatorname{Subdivide}(l+1\), ridx \()\)
 return Merge(left, right)
 end if
```


## Subdivide method



Evaluation

## HOW DOES THE LFQT IMPACT DT PERFORMANCE?

## Experimental Setup

- Dual-socket Intel Xeon E5-2670 @ 3.0 GHz - 16 cores / 32 threads, 64 GB DDR3
- fqDel (our implementation)
- Triangle 1.6
- CGAL 4.3
- Random point distributions (fixed seed)
- Uniform, Cluster, Grid, Circle and Spiral


## Single-threaded performance: fqDel vs. CGAL vs. Triangle



100k

## Single-threaded performance: fqDel vs. CGAL vs. Triangle






## fqDel performance scaling with input size



Multi-threading:
fqDel performance scaling with thread count


## Run-time distribution:

## How much time is spent in each part of fqDel



## Parallel GPU alternatives (CUDA)

- GPU-DT [Qi, Cao, Tan '12]
- Digital Voronoi diagram + edge flipping
- gDel2D [Cao, Nanjappa, Gao, Tan '14]
- Parallel point-insertion

Benchmarks with Geforce GTX 580

Note: both use double-precision

## fqDel vs. GPU alternatives



## fqDel vs. GPU alternatives



## Summary

- Efficient DT implementation for 2D point sets

Results 40-50x faster than previous CPU implementations

Considerably faster than GPU implementations

## Thank you!

