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Basic property of the Delaunay 
triangulation (DT) 

• No other points inside the circumcircle of a 
triangle 

 



Applications for the DT 

• point location 

• path finding 

• image processing 

• mesh generation 

• etc… 

 



Contribution of the talk 

• DT implementation for 2D point sets 

– Multi-threaded 

– High single-threaded performance 

– Big data sets 

– Results 40-50x faster than previous 
implementations 

 



DIFFICULTIES FOR A PARALLEL DT 
IMPLEMENTATION 

Problem 



Looking at previous implementations 
CGAL and Triangle 

CGAL 

• Point-insertion 

 
 
(www.cgal.org) 

Triangle 

• Divide-and-conquer 
(Dwyer’s algorithm) 

 
(www.cs.cmu.edu/~quake/triangle.html) 



CGAL algorithm 
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Difficulties with parallelization 

• CGAL: 

– Multiple threads need to read/modify a shared 
data structure 

 

• Triangle: 

– D&C: Limited parallelism at the start 

– Devisive sorting algorithm, problematic for 
scalability (compare top-down BVH construction) 
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THE LINEAR QUAD-TREE 
(WITH A TWIST) 

Our solution 



Linear Quad-tree 

• Concept known from BVH construction 
algorithms (linear oct-tree): 
– HLBVH [Pantaleoni, Luebke, 2010] 

– AAC [Gu, He, Fatahaliam, Blelloch, 2013] 

 

• Basic idea:  
Morton codes + (Radix) sort -> memory layout 
of points corresponds to depth-first traversal 
of quad-tree 

 



Linear Quad-tree 
1. Define grid  

2. Compute Morton codes 
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Twist: Morton codes directly from 
floating-point representation 



Quad-tree structure generated by 
floating-point Morton codes (LFQT) 
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Advantages of LFQT compared to 
regular linear Quad-tree 

• Bijectivity: code <-> value 

– ‘infinite’ resolution, i.e. one exclusive grid cell for 
every possible point 

– Reduced memory footprint 

• One fixed grid for every possible data set 

• Rigorous numerical structure, used for 
adaptive precision arithmetic -> see paper 



AN EFFICIENT, PARALLEL DT 
IMPLEMENTATION 

The algorithm 
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Subdivide method 

Input: Array of points 
from lidx to ridx 



Subdivide method 

Single point or only 
degenerate points left? 



Subdivide method 

Two points left? 



Subdivide method 

Find most significant bit 
which is different 



Subdivide method 

Find position where 
the bit changes 



Subdivide method 

Recurse subdivision and 
merge triangulations 



HOW DOES THE LFQT IMPACT DT 
PERFORMANCE? 

Evaluation 



Experimental Setup 

• Dual-socket Intel Xeon E5-2670 @ 3.0 GHz 

– 16 cores / 32 threads, 64 GB DDR3 

• fqDel (our implementation) 

• Triangle 1.6 

• CGAL 4.3 

• Random point distributions (fixed seed) 

– Uniform, Cluster, Grid, Circle and Spiral 



Single-threaded performance: 
fqDel vs. CGAL vs. Triangle 
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fqDel performance scaling with 
input size 



Multi-threading: 
fqDel performance scaling with 

thread count 



Run-time distribution: 
How much time is spent in each part 

of fqDel 



Parallel GPU alternatives (CUDA) 

• GPU-DT [Qi, Cao, Tan ‘12] 
– Digital Voronoi diagram + edge flipping 

 

• gDel2D [Cao, Nanjappa, Gao, Tan ‘14] 
– Parallel point-insertion 

 

Benchmarks with Geforce GTX 580 
 

Note: both use double-precision 



fqDel vs. GPU alternatives 



fqDel vs. GPU alternatives 



Summary 

• Efficient DT implementation for 2D point sets 
 

– Results 40-50x faster than previous CPU 
implementations 

– Considerably faster than GPU implementations 

 

 



Thank you! 


