

AN EVOLUTION OF MOBILE GRAPHICS

Michael C. Shebanow

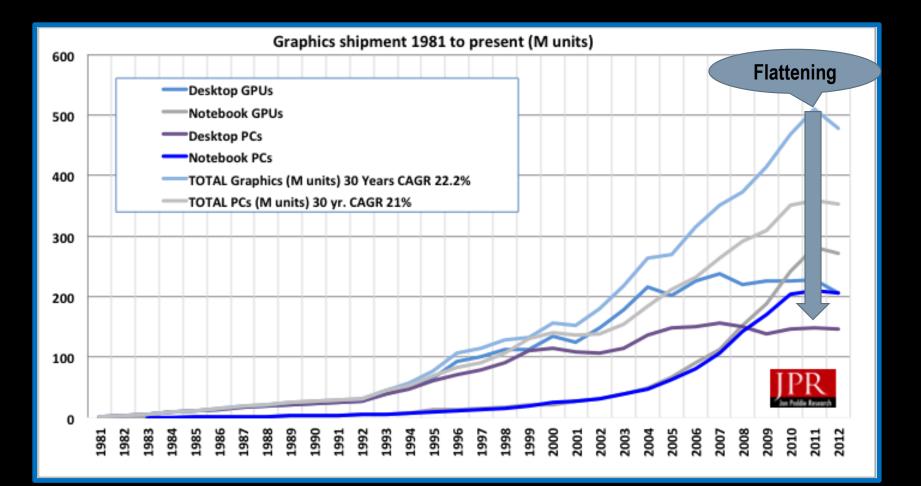
Vice President, Advanced Processor Lab Samsung Electronics

July 20, 2013

DISCLAIMER

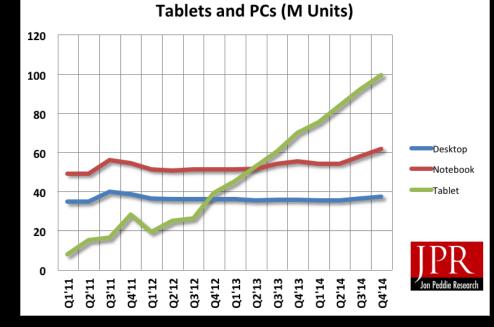
- The views herein are my own
- They do not represent Samsung's vision nor product plans

- The Mobile Market
- Review of GPU Tech
- GPU Efficiency
- User Experience
- Tech Challenges
- Summary



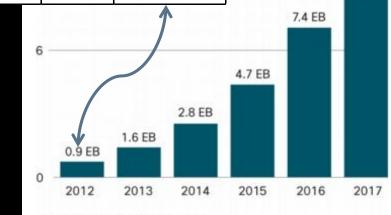
The Rise of the Mobile GPU & Connectivity

A NEW WORLD COMING?


DISCRETE GPU MARKET

MOBILE GPU MARKET

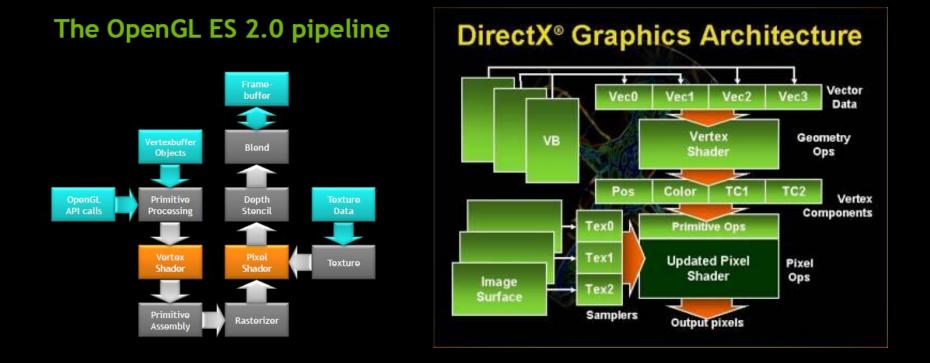
- In 2012, an estimated 800+ million mobile GPUs shipped
 - ~123M tablets
 - ~712M smart phones
- Will easily exceed 1B in the coming years
- Trend:
 - Discrete GPU relatively flat
 - Mobile is growing rapidly



WW INTERNET TRAFFIC

- Source: Cisco VNI
- Internet traffic growth rate is staggering
 - 2012 total traffic is 13.7 GB per person per month
 - 2012 smart phone traffic at
 0.342 GB per person per month
 - 2017 smart phone traffic expected at
 2.7 GB per person per month

IP Traffic growth Traffic Year (TB/sec) rate (TB/sec) 2005 0.9 0.00 2006 1.5 65% 0.00 2007 2.5 61% 0.01	
2005 0.9 0.00 2006 1.5 65% 0.00	
2006 1.5 65% 0.00	
2007 2.5 61% 0.01	
2008 3.8 54% 0.01 66%	CAGR 2012-2017
2009 5.6 45% 0.04	
2010 7.8 40% 0.10	11.2 EB
2011 10.6 36% 0.23	
2012 12.4 17% 0.34	

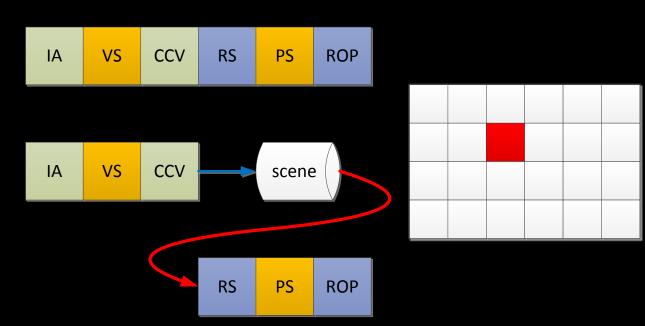


Source: Cisco VNI Mobile Forecast, 2013

- Enormous quantity of GPUs
- Large amount of interconnectivity
- Better I/O

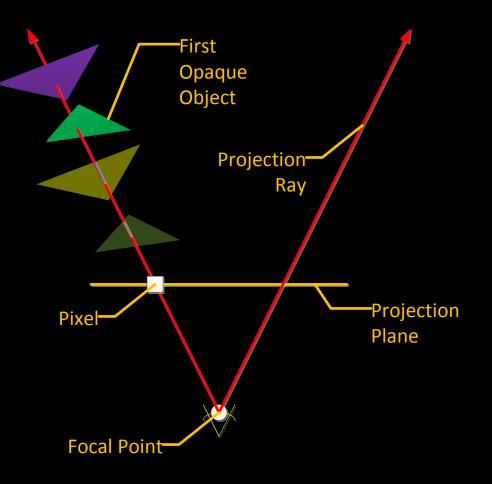
GPU Pipelines

A BRIEF REVIEW OF GPU TECH

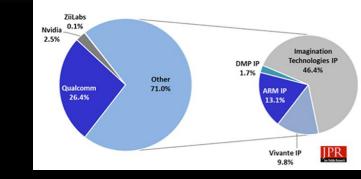


Tile-based immediate mode rendering (TBIMR)

Tile-based deferred rendering (TBDR)


> IA = input assembler VS = vertex shader CCV = cull, clip, viewport transform RS = rasterization, setup PS = pixel shader

ROP = raster operations (blend)



TBDR W/ HSR

- HSR = hidden surface removal
 - Sort all objects across each projection ray
 - Use tiling to reduce data set size
 - Only nearest opaque and closer transparent objects need to be drawn
 - Remaining fragments can be killed => not drawn

SoCs with embedded GPUs for small portable devices 1H'12

MOBILE GPU LANDSCAPE

Company	Product	Pipeline	Notes
ARM	Mali	TBIMR	Unified shader, 2-4 math pipes per core
Imagination	PowerVR	TBDR/HSR	Latest is Rogue (S6). Unified shader. DX11 support
Qualcomm	Adreno	FlexRender	Unified shader. "FlexRender" = automatic switching between direct render (IMR) and tile-based deferred rendering (TBDR).
NVIDIA	Tegra	TBDR & TBIMR	 Evolution: Tegra 1/2/3/4: non-unified TBDR architecture Logan: Kepler-based GPU, TBIMR Parker: Maxwell-based GPU, TBIMR
Vivante	ScalarMorphic	IMR	Unified Shader.
Intel	Gen Atom	IMR PowerVR	Market leader in integrated graphics. Atom-based devices using Imagination PowerVR
AMD	Radeon	IMR	Hondo/Temash pipes.

Efficiency

A PATH TO A BETTER MOBILE GPU? [PART 1]

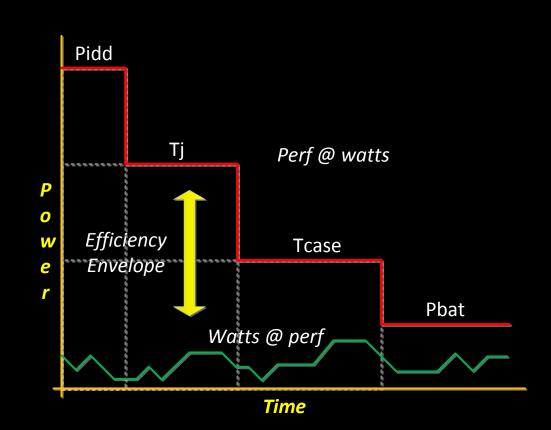
WHAT IS IMPORTANT?

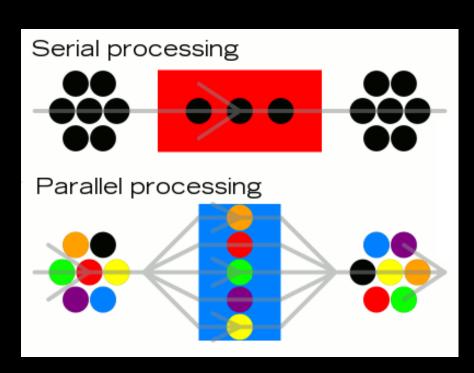
- More with less
- Better user experience

POWER EFFICIENCY

- Performance = power efficiency
- Two types of efficiency:
 - "perf@watts":
 - The ability to deliver maximum performance
 - "watts@perf":

The ability to deliver maximum battery life at a minimum required performance




WHAT IS EFFICIENCY?

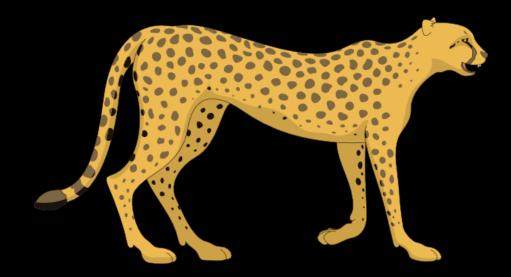
- Perf @ Watts
 - Maximum performance at some power limit
 - Limits:
 - electrical (Pidd)
 - die temp (Tj)
 - skin temp (Tcase)
 - battery life (Pbat)
- Watts @ Perf
 - *Minimum power at constant performance*
 - Example: deliver 60 frames/sec at lowest power

PARALLELISM

- Parallel vs. Sequential
 - Parallel \rightarrow independence
 - Sequential \rightarrow dependence
- Three fundamental forms of parallelism
 - Spatial: executing operations between threads at the same time
 - Temporal: executing operations between threads at the same place
 - ILP: executing operations from within the same thread in parallel
- Fundamental differences between ILP-only machines and massive TLP-ILP machines
 - CPUs vs. GPUs

THROUGHPUT VS. LATENCY

- Throughput = rate at which operations complete
- Latency = time it takes to complete an operation or set of operations
- CPUs versus GPUs
 - In CPUs, the primary objective is low latency
 - In GPUs, the primary objective is high throughput
- CPUs versus GPUs
 - In an application suitable for CPUs, we assume a low degree of TLP
 - In an application suitable for GPUs, we assume a high degree of TLP



GPU PERFORMANCE

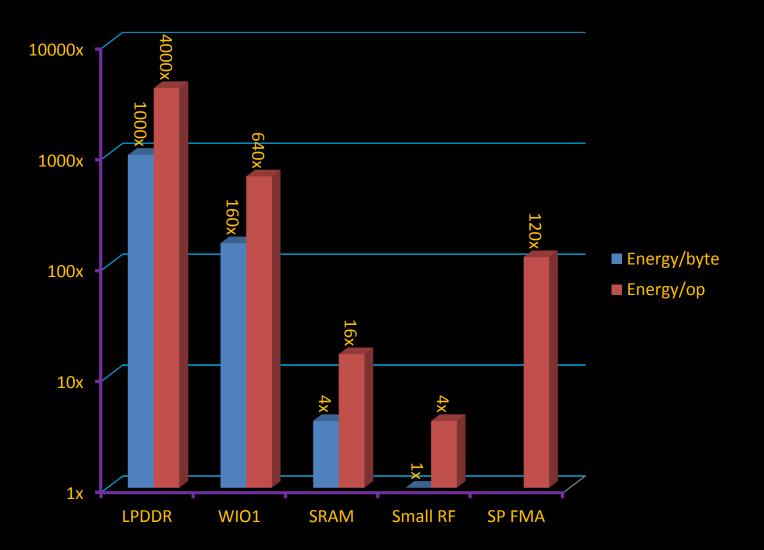
• Supply and demand:

- Lambda (λ) is throughput
- Supply examples:
 - FP BW (flops/clock)
 - Texture BW (quads/clock)
 - Memory BW (bytes/clock)
- Demand density examples:
 - FP ops per shader
 - Sample ops per shader

ENERGY REDUCTION TECHNIQUES

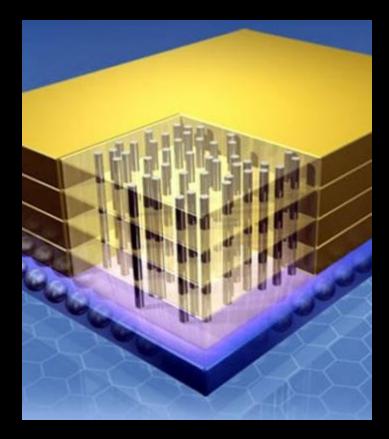
- Work Reduction
- Memory Avoidance
- Memory BW Reduction
- Memory Access
 Management

WORK REDUCTION

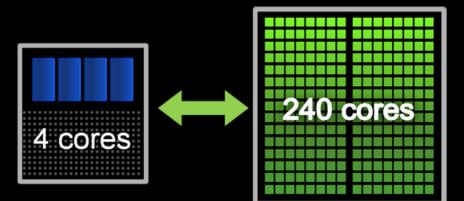

- Pixel shaders in ES games
 ~95% of the shader load
 - A pixel shader killed is raw power savings
 - HSR can kill 30-50% of the shader threads

- Geometry in DX11 a problem
 - Unigine Heaven ~10M Tri/frame
- Inter-frame work reduction?

RELATIVE ACCESS ENERGY COSTS



- Memory power a problem
 - LPDDR ~150 pJ/byte (150 mW @ 1 GB/sec)
 - WIO1 ~24 pJ/byte (24 mW @ 1 GB/sec)
 - On-chip SRAM ~0.6 pJ/byte (0.6 mW @ 1 GB/sec)
- Reduction in working set for nonessential traffic (i.e., not texture, attribute, command, or render target)
 - Rematerialize? (computation vs. BW)
 - Scheduling to reduce lifetimes?

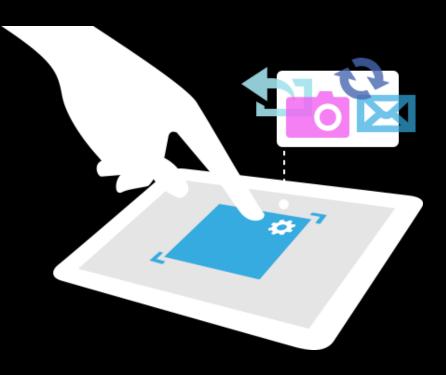

MEMORY BW REDUCTION

- Texture compression (RD)
 - Better compression?
 - Tessellation use of textures?
- Tile compression (WT)
 - TB-based signature checking
 - Lossless compression
- Attribute compression (RD)
 - Reduce stream BW

MEMORY ACCESS MANAGEMENT

- SOC memory architecture
 - Blood rivals (antagonists)
 - Effect of CPU/GPU traffic on Memory Controller (MC)
 - Intelligent page open/close management
 - Balance latency vs. BW

 Mismanaging DRAM results in both performance loss AND extra energy – double whammy


A better user experience...

A PATH TO A BETTER MOBILE GPU? [PART 2]

USER EXPERIENCE (UX)

- User Experience = perception of device:
 - Functionality
 - Integration into every day life
 - Ease of use (intuitive)

ISO 9241-210[1] defines user experience as "a person's perceptions and responses that result from the use or anticipated use of a product, system or service". - Wikipedia

APPLICATION: NAVIGATION

APPLICATION: TELEPRESENCE

http://www.youtube.com/watch?feature=player_detailpage&v=Nzi0sm81tP4

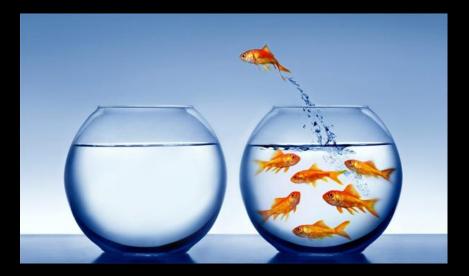
"General-Purpose Telepresence with Head-Worn Optical See-Through Displays and Projector-Based Lighting." by Maimone A., Yang, X., Dierk, N., State, A., Dou, M., and Fuchs, H., IEEE Virtual Reality 2013

APPLICATION: VIRTUAL COMPUTER

THE UX OPPORTUNITY

- Killer apps will be integration of:
 - AR/MR technology
 - Big Data operations

- Subject to:
 - Real-time constraints
 - Parallelization on a massive scale



Making a better UX

FUTURE MOBILE TECH CHALLENGES?

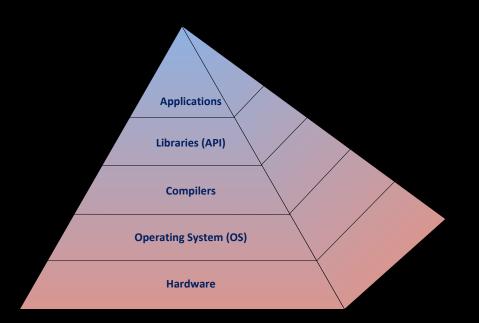
KEY CHALLENGES

- I/O:
 - AR Headsets
 - Environment Imaging
- Computational:
 - API Improvements
 - Cloud-device integration

AR HEADSETS

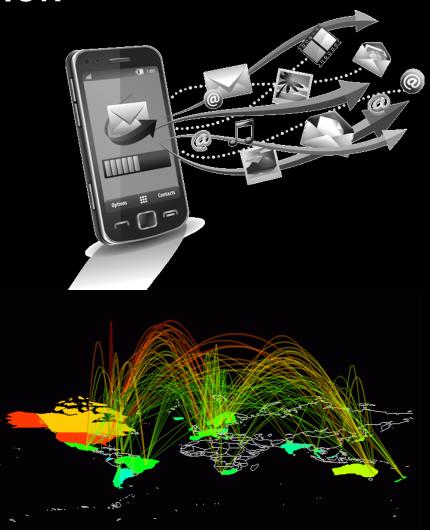
- Google Glass is pretty cool, but...
- Better imaging
 - Stereo/Light field
 - HD → UHD
 - Speed
- More sensors
- Wireless power?
- Fashion/ubiquity

ENVIRONMENT IMAGING


- For telepresence, headset camera is insufficient
- Need "environment cameras"

- Lots of privacy concerns
- Localizing environment to a client?

API IMPROVEMENTS


- Today's APIs are power inefficient
- Needed:
 - Hints
 - State-less rendering
 - API commands supply state with action
 - Frame-less rendering
 - Compositing deferred and on-demand
 - Hierarchical geometry
 - Deferred detail

CLOUD-DEVICE INTEGRATION

- SW Challenge:
 - Making cloud queries easier
 - Utilizing the parallelism of the cloud
- Ultimate challenge:
 - The "network GPU"
 - Analogously extend the GPU model to network scale
 - 10⁹ GPUs → 10²¹ FLOPs?

SUMMARY

- Mobile computing, in particular graphics, is growing rapidly and becoming ubiquitous
- Tomorrow's machines:
 - Ever improving efficiency
 - Integrated visual UX
 - Tied to the cloud
- Challenges remain to make this a reality
- Exciting prospects...

