
Fast Parallel Construction of High-Quality
Bounding Volume Hierarchies

Tero Karras

Timo Aila

Ray tracing comes in many flavors

2

Interactive apps

1M–100M
rays/frame

Architecture & design

100M–10G
rays/frame

Movie production

10G–1T
rays/frame

© Activision 2009, Game trailer by Blur Studio

Courtesy of Delta Tracing Lucasfilm Ltd.™, Digital work by ILM

Courtesy of Columbia Pictures

NVIDIA

Courtesy of Dassault Systemes

Effective performance

3

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑦 𝑡𝑟𝑎𝑐𝑖𝑛𝑔 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠

𝑟𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

Effective performance

4

𝑟𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑏𝑢𝑖𝑙𝑑 𝐵𝑉𝐻 +
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠

𝑟𝑎𝑦 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑦 𝑡𝑟𝑎𝑐𝑖𝑛𝑔 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠

𝑟𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

“speed” “quality”

Effective performance

5

0

50

100

150

200

250

300

350

400

450

1M 10M 100M 1G 10G 100G 1T

𝑒𝑓
𝑓
𝑒𝑐
𝑡𝑖
𝑣
𝑒
𝑝
𝑒𝑟
𝑓
𝑜
𝑟𝑚
𝑎
𝑛
𝑐𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

𝑟𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑏𝑢𝑖𝑙𝑑 𝐵𝑉𝐻 +
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠

𝑟𝑎𝑦 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

Interactive
apps

Architecture
& design

Movie
production

Both matter

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑦 𝑡𝑟𝑎𝑐𝑖𝑛𝑔 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠

𝑟𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

Mrays/s

Effective performance

6

0

50

100

150

200

250

300

350

400

450

1M 10M 100M 1G 10G 100G 1T

𝑒𝑓
𝑓
𝑒𝑐
𝑡𝑖
𝑣
𝑒
𝑝
𝑒𝑟
𝑓
𝑜
𝑟𝑚
𝑎
𝑛
𝑐𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

Mrays/s

SODA (2.2M tris)

NVIDIA GTX Titan

Diffuse rays

Effective performance

7

0

50

100

150

200

250

300

350

400

450

1M 10M 100M 1G 10G 100G 1T

𝑒𝑓
𝑓
𝑒𝑐
𝑡𝑖
𝑣
𝑒
𝑝
𝑒𝑟
𝑓
𝑜
𝑟𝑚
𝑎
𝑛
𝑐𝑒

SBVH
[Stich et al. 2009]

(CPU, 4 cores)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

Build time
dominates

Mrays/s

Effective performance

8

0

50

100

150

200

250

300

350

400

450

1M 10M 100M 1G 10G 100G 1T

𝑒𝑓
𝑓
𝑒𝑐
𝑡𝑖
𝑣
𝑒
𝑝
𝑒𝑟
𝑓
𝑜
𝑟𝑚
𝑎
𝑛
𝑐𝑒

HLBVH
[Garanzha et al. 2011]

(GPU)

???

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

Mrays/s

SBVH
[Stich et al. 2009]

(CPU, 4 cores)

Effective performance

9

0

50

100

150

200

250

300

350

400

450

1M 10M 100M 1G 10G 100G 1T

𝑒𝑓
𝑓
𝑒𝑐
𝑡𝑖
𝑣
𝑒
𝑝
𝑒𝑟
𝑓
𝑜
𝑟𝑚
𝑎
𝑛
𝑐𝑒

Our method
(GPU)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

Mrays/s

HLBVH
[Garanzha et al. 2011]

(GPU)

SBVH
[Stich et al. 2009]

(CPU, 4 cores)

0

50

100

150

200

250

300

350

400

450

1M 10M 100M 1G 10G 100G 1T

Effective performance

10

𝑒𝑓
𝑓
𝑒𝑐
𝑡𝑖
𝑣
𝑒
𝑝
𝑒𝑟
𝑓
𝑜
𝑟𝑚
𝑎
𝑛
𝑐𝑒

30M–500G
rays/frame

97% of
SBVH

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

Mrays/s

Best quality–speed tradeoff for wide range of
applications

Treelet restructuring

11

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet restructuring

12

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

R

Treelet restructuring

13

Treelet root

Treelet leaf

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

R

Treelet restructuring

14

Treelet root

Treelet leaf

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into
internal nodes

Grow

R

Treelet restructuring

15

Treelet
internal

node

Grow

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into
internal nodes

R

Treelet restructuring

16

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into
internal nodes

R

Treelet restructuring

17

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into
internal nodes

R

Treelet restructuring

18

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into
internal nodes

Treelet restructuring

19

R

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into
internal nodes

Largest leaves → best results

Treelet restructuring

20

R

C

A B

F

D

G

E

𝑛 = 7
treelet leaves

𝑛 − 1 = 6
treelet internal

nodesIdea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into
internal nodes

Largest leaves → best results

Valid binary tree in itself

Treelet restructuring

21

R

C

A B

F

D

G

E

Actual
BVH leaf

Arbitrary
subtree

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into
internal nodes

Largest leaves → best results

Valid binary tree in itself
Leaves can represent arbitrary
subtrees of the BVH

Treelet restructuring

22

R

C

A B

F

D

G

E

Restructuring
Construct optimal binary tree
for the same set of leaves

Replace old treelet

Treelet restructuring

23

C

A B

F

D

G

E

R

Restructuring
Construct optimal binary tree
for the same set of leaves

Replace old treelet

Reuse the same nodes
Update connectivity and AABBs

New AABBs should be smaller

D

E

G

Treelet restructuring

24

A

R

C

F

B

Restructuring
Construct optimal binary tree
for the same set of leaves

Replace old treelet

Reuse the same nodes
Update connectivity and AABBs

New AABBs should be smaller

Treelet restructuring

25

CA BF

D

G E

R

Restructuring
Construct optimal binary tree
for the same set of leaves

Replace old treelet

Reuse the same nodes
Update connectivity and AABBs

New AABBs should be smaller

Treelet restructuring

26

R

CA BF

D

G E

Restructuring
Construct optimal binary tree
for the same set of leaves

Replace old treelet

Reuse the same nodes
Update connectivity and AABBs

New AABBs should be smaller

Perfectly localized operation
Leaves and their subtrees are
kept intact

No need to look at subtree
contents

Processing stages

27

Initial BVH construction

Post-processing

Optimization

Input triangles

One triangle
per leaf

Processing stages

28

Initial BVH construction

Post-processing

Optimization

Parallel LBVH
[Karras 2012]

60-bit Morton codes
for accurate spatial

partitioning

Processing stages

29

Initial BVH construction

Post-processing

Optimization

Parallel bottom-up traversal
[Karras 2012]

Restructure multiple
treelets in parallel

Processing stages

30

Initial BVH construction

Post-processing

Optimization

Parallel bottom-up traversal
[Karras 2012]

Processing stages

31

Initial BVH construction

Post-processing

Optimization

Parallel bottom-up traversal
[Karras 2012]

Processing stages

32

Initial BVH construction

Post-processing

Optimization

Parallel bottom-up traversal
[Karras 2012]

Processing stages

33

Initial BVH construction

Post-processing

Optimization

Parallel bottom-up traversal
[Karras 2012]

Processing stages

34

Initial BVH construction

Post-processing

Optimization

Parallel bottom-up traversal
[Karras 2012]

Processing stages

35

Initial BVH construction

Post-processing

Optimization

Parallel bottom-up traversal
[Karras 2012]

Strict bottom-up order
→ no overlap between treelets

Processing stages

36

Initial BVH construction

Post-processing

Rinse and repeat
(3 times is plenty)

Optimization

Processing stages

37

Initial BVH construction

Post-processing

Optimization

Collapse subtrees
into leaf nodes

Processing stages

38

Initial BVH construction

Post-processing

Optimization

Collect triangles
into linear lists Prepare them for Woop’s

intersection test
[Woop 2004]

Processing stages

39

Initial BVH construction

Post-processing

Optimization

Fast GPU ray traversal
[Aila et al. 2012]

Processing stages

40

Initial BVH construction

Post-processing

Optimization

Triangle splitting

Fast GPU ray traversal
[Aila et al. 2012]

Processing stages

41

Initial BVH construction

Post-processing

Optimization

Triangle splitting

Fast GPU ray traversal
[Aila et al. 2012]

0.4 ms

5.4 ms

6.6 ms

17.0 ms

21.4 ms

1.2 ms

1.6 ms

DRAGON (870K tris)

NVIDIA GTX Titan
23.6 ms / 30.0 ms

No splits

30% splits

Cost model

Surface area cost model
[Goldsmith and Salmon 1987], [MacDonald and Booth 1990]

𝑆𝐴𝐻 ≔ 𝐶𝑖

𝑛∈𝐼

𝐴(𝑛)

𝐴(root)
+ 𝐶𝑡

𝑙∈𝐿

𝐴 𝑙

𝐴 root
𝑁(𝑙)

Track cost and triangle count of each subtree

Minimize SAH cost of the final BVH

Make collapsing decisions already during optimization

→ Unified processing of leaves and internal nodes

42

Optimal restructuring

43

Finding the optimal node topology is NP-hard

Naive algorithm → ࣩ 𝑛!

Our approach → ࣩ 3𝑛

But it becomes very powerful as 𝑛 grows

𝑛 = 7 treelet leaves is enough for high-quality results

Use fixed-size treelets

Constant cost per treelet

→ Linear with respect to scene size

Optimal restructuring

44

Treelet size Layouts Quality vs. SBVH *

4 15 78%

5 105 85%

6 945 88%

7 10,395 97%

8 135,135 98%

* SODA (2.2M tris)

Number of unique ways for
restructuring a given treelet

Ray tracing performance
after 3 rounds of optimization

Optimal restructuring

45

Treelet size Layouts Quality vs. SBVH *

4 15 78%

5 105 85%

6 945 88%

7 10,395 97%

8 135,135 98%

* SODA (2.2M tris)

Almost the
same thing as
tree rotations

[Kensler 2008]

Limited options during optimization
→ easy to get stuck in a local optimum

Varies a lot
between
scenes

Optimal restructuring

46

Treelet size Layouts Quality vs. SBVH *

4 15 78%

5 105 85%

6 945 88%

7 10,395 97%

8 135,135 98%

* SODA (2.2M tris)

Can still be
implemented

efficiently

Surely one of these
will take us forward

Consistent
across scenes

Further improvement
is marginal

Algorithm

Dynamic programming

Solve small subproblems first

Tabulate their solutions

Build on them to solve larger subproblems

Subproblem:

What’s the best node topology for a subset of the leaves?

47

Algorithm

48

input: set of 𝑛 treelet leaves
for 𝑘 = 2 to 𝑛 do

for each subset of size 𝑘 do
for each way of partitioning the leaves do

look up subtree costs
calculate SAH cost

end for
record the best solution

end for
end for
reconstruct optimal topology

Process subsets from
smallest to largest

Record the optimal
SAH cost for each

Algorithm

49

input: set of 𝑛 treelet leaves
for 𝑘 = 2 to 𝑛 do

for each subset of size 𝑘 do
for each way of partitioning the leaves do

look up subtree costs
calculate SAH cost

end for
record the best solution

end for
end for
reconstruct optimal topology

Exhaustive search:
assign each leaf to
left/right subtree

We already know
how much the
subtrees will cost

Backtrack the
partitioning choices

Scalar vs. SIMD

50

Scalar processing

Each thread processes one
treelet

Need many treelets in flight

SIMD processing

32 threads collaborate on the
same treelet

Need few treelets in flight

✗Spills to off-chip memory

✗Doesn’t scale to small scenes

✓Trivial to implement

✓Data fits in on-chip memory

✓Easy to fill the entire GPU

✗Need to keep all threads busy

Parallelize over subproblems using
a pre-optimized processing schedule

(details in the paper)

Scalar vs. SIMD

51

Scalar processing

Each thread processes one
treelet

Need many treelets in flight

SIMD processing

32 threads collaborate on the
same treelet

Need few treelets in flight

✓Data fits in on-chip memory

✓Easy to fill the entire GPU

✓Possible to keep threads busy

✗Spills to off-chip memory

✗Doesn’t scale to small scenes

✓Trivial to implement

Quality vs. speed

Spend less effort on bottom-most nodes

Low contribution to SAH cost

Quick convergence

Additional parameter 𝛾

Only process subtrees that are large enough

Trade quality for speed

Double 𝛾 after each round

Significant speedup

Negligible effect on quality

52

Triangle splitting

Early Split Clipping [Ernst and Greiner 2007]
Split triangle bounding boxes as a pre-process

53

Bounding box is not
a good approximation

Split it!

Large triangle

Triangle splitting

54

Resulting boxes
provide a
tighter bound

Keep going until they
are small enough

Early Split Clipping [Ernst and Greiner 2007]
Split triangle bounding boxes as a pre-process

Triangle splitting

55

Early Split Clipping [Ernst and Greiner 2007]
Split triangle bounding boxes as a pre-process

Keep going until they
are small enough

Triangle splitting

56

Early Split Clipping [Ernst and Greiner 2007]
Split triangle bounding boxes as a pre-process

Treat each box as a
separate primitive

Triangle itself
remains the same

Triangle splitting

Shortcomings of pre-process splitting

Can hurt ray tracing performance

Unpredictable memory usage

Requires manual tuning

Improve with better heuristics

Select good split planes

Concentrate splits where they matter

Use a fixed split budget

57

Split plane selection

58

Root node partitions the
scene at its spatial median

Reduce node overlap in the initial BVH

Split plane selection

59

Left child

Right child

Reduce node overlap in the initial BVH

If a triangle
crosses the plane...

Split plane selection

60

...the bounding boxes will overlap

Use the same
spatial median
as a split plane

Reduce node overlap in the initial BVH

Split plane selection

61

No overlap

Use the same
spatial median
as a split plane

Reduce node overlap in the initial BVH

Split plane selection

62

Splitting one triangle
does not help much

Need to split them all
to get the benefits

Reduce node overlap in the initial BVH

Split plane selection

63

Reduce node overlap in the initial BVH

Split plane selection

64

Same reasoning holds on multiple levels

Reduce node overlap in the initial BVH

Level 0

Level 1

Level 2 Level 2

Level 3

Level 3

Split plane selection

65

Look at all spatial
median planes that
intersect a triangle

Split it with the
dominant one

Reduce node overlap in the initial BVH

Level 1

Level 2 Level 2Level 0

Level 3

Level 3

Algorithm

1. Allocate memory for a fixed split budget

66

Algorithm

1. Allocate memory for a fixed split budget

2. Calculate a priority value for each triangle

67

Algorithm

1. Allocate memory for a fixed split budget

2. Calculate a priority value for each triangle

3. Distribute the split budget among triangles

Proportional to their priority values

68

Algorithm

1. Allocate memory for a fixed split budget

2. Calculate a priority value for each triangle

3. Distribute the split budget among triangles

Proportional to their priority values

4. Split each triangle recursively

Distribute remaining splits according to the size of the
resulting AABBs

69

Split priority

70

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 2(−𝑙𝑒𝑣𝑒𝑙) ∙ 𝐴𝑎𝑎𝑏𝑏 − 𝐴𝑖𝑑𝑒𝑎𝑙
 1 3

Crosses an important
spatial median plane?

Has large potential for
reducing surface area?

Concentrate on triangles
where both apply

…but leave
something for
the rest, too

Results
Compare against 4 CPU and 3 GPU builders

4-core i7 930, NVIDIA GTX Titan

Average of 20 test scenes, multiple viewpoints

71

Ray tracing performance

72

SweepSAH
[MacDonald]

SBVH
[Stich]

Tree
rotations
[Kensler]

Iterative
reinsertion

[Bittner]

0%

20%

40%

60%

80%

100%

120%

140%

SweepSAH = 100%

High-quality CPU builders

SBVH = 131%

0%

20%

40%

60%

80%

100%

120%

140%

Ray tracing performance

73

SweepSAH
[MacDonald]

SBVH
[Stich]

Tree
rotations
[Kensler]

Iterative
reinsertion

[Bittner]

LBVH
[Karras]

HLBVH
[Garanzha]

GridSAH
[Garanzha]

Fast GPU builders

67% – 69%

SBVH = 131%

Almost 2×

Ray tracing performance

74

SweepSAH
[MacDonald]

SBVH
[Stich]

Tree
rotations
[Kensler]

Iterative
reinsertion

[Bittner]

TRBVH TRBVH
+30% split

LBVH
[Karras]

HLBVH
[Garanzha]

GridSAH
[Garanzha]

0%

20%

40%

60%

80%

100%

120%

140%

No splits

30% splits

Our method

Ray tracing performance

75

SweepSAH
[MacDonald]

SBVH
[Stich]

Tree
rotations
[Kensler]

Iterative
reinsertion

[Bittner]

TRBVH TRBVH
+30% split

LBVH
[Karras]

HLBVH
[Garanzha]

GridSAH
[Garanzha]

0%

20%

40%

60%

80%

100%

120%

140%

96% of SweepSAH

91% of SBVH

Effective performance

76

0%

20%

40%

60%

80%

100%

120%

140%

1M 10M 100M 1G 10G 100G 1T

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

Tree rotations
[Kensler]

Iterative reinsertion
[Bittner]

Not Pareto-optimal

SBVH
[Stich]

SweepSAH
[MacDonald]

Effective performance

77

0%

20%

40%

60%

80%

100%

120%

140%

1M 10M 100M 1G 10G 100G 1T

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

SBVH
[Stich]

SweepSAH
[MacDonald]

Effective performance

78

0%

20%

40%

60%

80%

100%

120%

140%

1M 10M 100M 1G 10G 100G 1T

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

HLBVH
[Garanzha] GridSAH

[Garanzha]

SBVH
[Stich]

SweepSAH
[MacDonald]

LBVH
[Karras]

Not Pareto-optimal

Effective performance

79

0%

20%

40%

60%

80%

100%

120%

140%

1M 10M 100M 1G 10G 100G 1T

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

SBVH
[Stich]

SweepSAH
[MacDonald]

LBVH
[Karras]

Effective performance

80

0%

20%

40%

60%

80%

100%

120%

140%

1M 10M 100M 1G 10G 100G 1T

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

SBVH
[Stich]

Our method
(no splits)

SweepSAH
[MacDonald]

LBVH
[Karras]

Our method
(30% splits)

Effective performance

81

0%

20%

40%

60%

80%

100%

120%

140%

1M 10M 100M 1G 10G 100G 1T

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

7M–60G rays/frame
→ our method is the best choice

Below 7M
→ LBVH

Above 60G
→ SBVH

Conclusion

General framework for optimizing trees

Inherently parallel

Approximate restructuring → larger treelets?

Practical GPU-based BVH builder

Best choice in a large class of applications

Adjustable quality–speed tradeoff

Will be integrated into NVIDIA OptiX

82

83

Thank you

Acknowledgements

Samuli Laine

Jaakko Lehtinen

Sami Liedes

David McAllister

Anonymous reviewers

Anat Grynberg and Greg Ward for CONFERENCE

University of Utah for FAIRY

Marko Dabrovic for SIBENIK

Ryan Vance for BUBS

Samuli Laine for HAIRBALL and VEGETATION

Guillermo Leal Laguno for SANMIGUEL

Jonathan Good for ARABIC, BABYLONIAN and ITALIAN

Stanford Computer Graphics Laboratory for ARMADILLO, BUDDHA and DRAGON

Cornell University for BAR

Georgia Institute of Technology for BLADE

