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Ray tracing comes in many flavors
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Interactive apps

1M–100M
rays/frame

Architecture & design

100M–10G
rays/frame

Movie production

10G–1T
rays/frame

© Activision 2009, Game trailer by Blur Studio

Courtesy of Delta Tracing Lucasfilm Ltd.™, Digital work by ILM

Courtesy of Columbia Pictures

NVIDIA

Courtesy of Dassault Systemes



Effective performance
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𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑦 𝑡𝑟𝑎𝑐𝑖𝑛𝑔 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠

𝑟𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
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𝑟𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑏𝑢𝑖𝑙𝑑 𝐵𝑉𝐻 +
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠

𝑟𝑎𝑦 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑦 𝑡𝑟𝑎𝑐𝑖𝑛𝑔 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠

𝑟𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

“speed” “quality”
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𝑟𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑏𝑢𝑖𝑙𝑑 𝐵𝑉𝐻 +
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠

𝑟𝑎𝑦 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

Interactive
apps

Architecture
& design

Movie
production

Both matter

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑦 𝑡𝑟𝑎𝑐𝑖𝑛𝑔 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠

𝑟𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

Mrays/s
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𝑒𝑓
𝑓
𝑒𝑐
𝑡𝑖
𝑣
𝑒
𝑝
𝑒𝑟
𝑓
𝑜
𝑟𝑚
𝑎
𝑛
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30M–500G
rays/frame

97% of
SBVH

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑦𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒

Mrays/s

Best quality–speed tradeoff for wide range of 
applications



Treelet restructuring
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Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once
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Subset of a node’s descendants
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Treelet restructuring

13

Treelet root

Treelet leaf
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Treelet root

Treelet leaf

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into 
internal nodes

Grow
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Treelet
internal

node

Grow

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into 
internal nodes
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Treelet restructuring
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R

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into 
internal nodes

Largest leaves → best results
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𝑛 = 7
treelet leaves

𝑛 − 1 = 6
treelet internal

nodesIdea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into 
internal nodes

Largest leaves → best results

Valid binary tree in itself
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Actual
BVH leaf

Arbitrary
subtree

Idea
Build a low-quality BVH

Optimize its node topology

Look at multiple nodes at once

Treelet
Subset of a node’s descendants

Grow by turning leaves into 
internal nodes

Largest leaves → best results

Valid binary tree in itself
Leaves can represent arbitrary 
subtrees of the BVH
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Restructuring
Construct optimal binary tree 
for the same set of leaves

Replace old treelet
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C
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R

Restructuring
Construct optimal binary tree 
for the same set of leaves

Replace old treelet

Reuse the same nodes
Update connectivity and AABBs

New AABBs should be smaller
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Treelet restructuring
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Restructuring
Construct optimal binary tree 
for the same set of leaves

Replace old treelet

Reuse the same nodes
Update connectivity and AABBs

New AABBs should be smaller
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CA BF

D

G E

R

Restructuring
Construct optimal binary tree 
for the same set of leaves

Replace old treelet

Reuse the same nodes
Update connectivity and AABBs

New AABBs should be smaller



Treelet restructuring
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R

CA BF

D

G E

Restructuring
Construct optimal binary tree 
for the same set of leaves

Replace old treelet

Reuse the same nodes
Update connectivity and AABBs

New AABBs should be smaller

Perfectly localized operation
Leaves and their subtrees are 
kept intact

No need to look at subtree 
contents



Processing stages
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Initial BVH construction

Post-processing

Optimization

Input triangles

One triangle
per leaf



Processing stages
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Initial BVH construction

Post-processing

Optimization

Parallel LBVH
[Karras 2012]

60-bit Morton codes
for accurate spatial

partitioning



Processing stages
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Initial BVH construction

Post-processing

Optimization

Parallel bottom-up traversal
[Karras 2012]

Restructure multiple
treelets in parallel
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Initial BVH construction
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Parallel bottom-up traversal
[Karras 2012]
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Initial BVH construction

Post-processing

Optimization

Parallel bottom-up traversal
[Karras 2012]



Processing stages
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Initial BVH construction

Post-processing

Optimization

Parallel bottom-up traversal
[Karras 2012]

Strict bottom-up order
→ no overlap between treelets



Processing stages
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Initial BVH construction

Post-processing

Rinse and repeat
(3 times is plenty)

Optimization



Processing stages
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Initial BVH construction

Post-processing

Optimization

Collapse subtrees
into leaf nodes



Processing stages
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Initial BVH construction

Post-processing

Optimization

Collect triangles
into linear lists Prepare them for Woop’s

intersection test
[Woop 2004]



Processing stages
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Initial BVH construction

Post-processing

Optimization

Fast GPU ray traversal
[Aila et al. 2012]



Processing stages
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Initial BVH construction

Post-processing

Optimization

Triangle splitting

Fast GPU ray traversal
[Aila et al. 2012]



Processing stages
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Initial BVH construction

Post-processing

Optimization

Triangle splitting

Fast GPU ray traversal
[Aila et al. 2012]

0.4 ms

5.4 ms

6.6 ms

17.0 ms

21.4 ms

1.2 ms

1.6 ms

DRAGON (870K tris)

NVIDIA GTX Titan
23.6 ms / 30.0 ms

No splits

30% splits



Cost model

Surface area cost model
[Goldsmith and Salmon 1987], [MacDonald and Booth 1990]

𝑆𝐴𝐻 ≔ 𝐶𝑖 

𝑛∈𝐼

𝐴(𝑛)

𝐴(root)
+ 𝐶𝑡 

𝑙∈𝐿

𝐴 𝑙

𝐴 root
𝑁(𝑙)

Track cost and triangle count of each subtree

Minimize SAH cost of the final BVH

Make collapsing decisions already during optimization

→ Unified processing of leaves and internal nodes

42



Optimal restructuring
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Finding the optimal node topology is NP-hard

Naive algorithm → ࣩ 𝑛!

Our approach → ࣩ 3𝑛

But it becomes very powerful as 𝑛 grows

𝑛 = 7 treelet leaves is enough for high-quality results

Use fixed-size treelets

Constant cost per treelet

→ Linear with respect to scene size



Optimal restructuring
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Treelet size Layouts Quality vs. SBVH *

4 15 78%

5 105 85%

6 945 88%

7 10,395 97%

8 135,135 98%

* SODA (2.2M tris)

Number of unique ways for
restructuring a given treelet

Ray tracing performance
after 3 rounds of optimization



Optimal restructuring
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Treelet size Layouts Quality vs. SBVH *

4 15 78%

5 105 85%

6 945 88%

7 10,395 97%

8 135,135 98%

* SODA (2.2M tris)

Almost the
same thing as
tree rotations

[Kensler 2008]

Limited options during optimization
→ easy to get stuck in a local optimum

Varies a lot
between
scenes



Optimal restructuring

46

Treelet size Layouts Quality vs. SBVH *

4 15 78%

5 105 85%

6 945 88%

7 10,395 97%

8 135,135 98%

* SODA (2.2M tris)

Can still be
implemented

efficiently

Surely one of these
will take us forward 

Consistent
across scenes

Further improvement
is marginal



Algorithm

Dynamic programming

Solve small subproblems first

Tabulate their solutions

Build on them to solve larger subproblems

Subproblem:

What’s the best node topology for a subset of the leaves?

47



Algorithm

48

input: set of 𝑛 treelet leaves
for 𝑘 = 2 to 𝑛 do

for each subset of size 𝑘 do
for each way of partitioning the leaves do

look up subtree costs
calculate SAH cost

end for
record the best solution

end for
end for
reconstruct optimal topology

Process subsets from
smallest  to largest

Record the optimal
SAH cost for each



Algorithm
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input: set of 𝑛 treelet leaves
for 𝑘 = 2 to 𝑛 do

for each subset of size 𝑘 do
for each way of partitioning the leaves do

look up subtree costs
calculate SAH cost

end for
record the best solution

end for
end for
reconstruct optimal topology

Exhaustive search:
assign each leaf to
left/right subtree

We already know
how much the
subtrees will cost

Backtrack the
partitioning choices



Scalar vs. SIMD
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Scalar processing

Each thread processes one 
treelet

Need many treelets in flight

SIMD processing

32 threads collaborate on the 
same treelet

Need few treelets in flight

✗Spills to off-chip memory

✗Doesn’t scale to small scenes

✓Trivial to implement

✓Data fits in on-chip memory

✓Easy to fill the entire GPU

✗Need to keep all threads busy

Parallelize over subproblems using
a pre-optimized processing schedule

(details in the paper)



Scalar vs. SIMD
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Scalar processing

Each thread processes one 
treelet

Need many treelets in flight

SIMD processing

32 threads collaborate on the 
same treelet

Need few treelets in flight

✓Data fits in on-chip memory

✓Easy to fill the entire GPU

✓Possible to keep threads busy

✗Spills to off-chip memory

✗Doesn’t scale to small scenes

✓Trivial to implement



Quality vs. speed

Spend less effort on bottom-most nodes

Low contribution to SAH cost

Quick convergence

Additional parameter 𝛾

Only process subtrees that are large enough

Trade quality for speed

Double 𝛾 after each round

Significant speedup

Negligible effect on quality

52



Triangle splitting

Early Split Clipping [Ernst and Greiner 2007]
Split triangle bounding boxes as a pre-process

53

Bounding box is not
a good approximation

Split it!

Large triangle



Triangle splitting
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Resulting boxes
provide a
tighter bound

Keep going until they
are small enough

Early Split Clipping [Ernst and Greiner 2007]
Split triangle bounding boxes as a pre-process



Triangle splitting
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Early Split Clipping [Ernst and Greiner 2007]
Split triangle bounding boxes as a pre-process

Keep going until they
are small enough



Triangle splitting
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Early Split Clipping [Ernst and Greiner 2007]
Split triangle bounding boxes as a pre-process

Treat each box as a
separate primitive

Triangle itself
remains the same



Triangle splitting

Shortcomings of pre-process splitting

Can hurt ray tracing performance

Unpredictable memory usage

Requires manual tuning

Improve with better heuristics

Select good split planes

Concentrate splits where they matter

Use a fixed split budget

57



Split plane selection
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Root node partitions the
scene at its spatial median

Reduce node overlap in the initial BVH



Split plane selection
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Left child

Right child

Reduce node overlap in the initial BVH



If a triangle
crosses the plane...

Split plane selection
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...the bounding boxes will overlap

Use the same
spatial median
as a split plane

Reduce node overlap in the initial BVH



Split plane selection
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No overlap

Use the same
spatial median
as a split plane

Reduce node overlap in the initial BVH



Split plane selection
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Splitting one triangle
does not help much

Need to split them all
to get the benefits

Reduce node overlap in the initial BVH



Split plane selection
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Reduce node overlap in the initial BVH



Split plane selection
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Same reasoning holds on multiple levels

Reduce node overlap in the initial BVH

Level 0

Level 1

Level 2 Level 2

Level 3

Level 3



Split plane selection
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Look at all spatial
median planes that
intersect a triangle

Split it with the
dominant one

Reduce node overlap in the initial BVH

Level 1

Level 2 Level 2Level 0

Level 3

Level 3



Algorithm

1. Allocate memory for a fixed split budget

66



Algorithm

1. Allocate memory for a fixed split budget

2. Calculate a priority value for each triangle
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Algorithm

1. Allocate memory for a fixed split budget

2. Calculate a priority value for each triangle

3. Distribute the split budget among triangles

Proportional to their priority values
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Algorithm

1. Allocate memory for a fixed split budget

2. Calculate a priority value for each triangle

3. Distribute the split budget among triangles

Proportional to their priority values

4. Split each triangle recursively

Distribute remaining splits according to the size of the 
resulting AABBs

69



Split priority
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𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 2(−𝑙𝑒𝑣𝑒𝑙) ∙ 𝐴𝑎𝑎𝑏𝑏 − 𝐴𝑖𝑑𝑒𝑎𝑙
 1 3

Crosses an important
spatial median plane?

Has large potential for
reducing surface area?

Concentrate on triangles
where both apply

…but leave
something for
the rest, too



Results
Compare against 4 CPU and 3 GPU builders

4-core i7 930, NVIDIA GTX Titan

Average of 20 test scenes, multiple viewpoints

71



Ray tracing performance
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[Kensler]

Iterative
reinsertion

[Bittner]
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GridSAH
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Fast GPU builders

67% – 69%

SBVH = 131%

Almost 2×
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Conclusion

General framework for optimizing trees

Inherently parallel

Approximate restructuring → larger treelets?

Practical GPU-based BVH builder

Best choice in a large class of applications

Adjustable quality–speed tradeoff

Will be integrated into NVIDIA OptiX

82



83

Thank you

Acknowledgements

Samuli Laine

Jaakko Lehtinen

Sami Liedes

David McAllister

Anonymous reviewers

Anat Grynberg and Greg Ward for CONFERENCE

University of Utah for FAIRY

Marko Dabrovic for SIBENIK

Ryan Vance for BUBS

Samuli Laine for HAIRBALL and VEGETATION

Guillermo Leal Laguno for SANMIGUEL

Jonathan Good for ARABIC, BABYLONIAN and ITALIAN

Stanford Computer Graphics Laboratory for ARMADILLO, BUDDHA and DRAGON

Cornell University for BAR

Georgia Institute of Technology for BLADE


