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Introduction

= Recent advances in ray tracing
= construct acceleration data structures before ray tracing
= grid, kd-tree, bounding volume hierarchy (BVH)
= acceleration data structures require extensive memory
= required memory is not determined before construction

P

[Wald 2006] [Zhou 2008] [Wald 2007]



Divide-And-Conquer Ray Tracing (DACRT)

= Ray tracing based on divide-and-conquer algorithm

[Keller et al. 2011] [Mora 2011] [Afra 2012]
= trace rays and construct acceleration data structures
simultaneously

= no storage cost for acceleration data structures
= required memory is minimal and deterministic

[Mora 2011] [Afra 2012] 4
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= Solve intersection problem between rays and primitives
using divide-and-conquer algorithm

= triangles are used as primitives

bounding
volume

set of rays set of triangles 5
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ivide-And-Conquer Ray Tracing (DACRT)

= Partition a set of triangles into subsets of triangles
= space partitioning (kd-tree)
= object partitioning (BVH)
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ivide-And-Conquer Ray Tracing (DACRT)

= Partition a set of rays intersecting bounding volume

active rays

ray filtering ’
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Divide-And-Conquer Ray Tracing (DACRT)

= Partition a set of rays intersecting bounding volume

<€ »
. vy

ray filtering g
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ivide-And-Conquer Ray Tracing (DACRT)

= Solve intersection problem directly
= if numbers of rays or triangles are sufficiently small
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ivide-And-Conquer Ray Tracing (DACRT)

= Solve intersection problem directly
= if numbers of rays or triangles are sufficiently small
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Problems of Previous DACRT Methods

= Subdivide problems based on triangle distribution only
= partition triangles assuming uniform distribution of rays
= jnefficient for concentrated distribution of rays

_ .

partitioning based on partitioning based on
distribution of triangles only distributions of triangles and rays
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Problems of Previous DACRT Methods

= Ray filtering may not reduce number of active rays
= require many ray/bounding volume intersection tests
= ray filtering is computationally expensive

only one ray is reduced

— E—— >
S o : ~
S ray filtering S
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'\ > '\

inefficient case of ray filtering
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Contributions of Our DACRT Method

= Accelerate ray tracing using ray sampling
= efficient partitioning and ray traversal

= Derive a new cost metric to avoid inefficient ray filtering
= simple but efficient |

rendering result of our method i3
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Features of Qur DACRT Method

= Accelerate tracing of many types of rays by a factor of 2

= primary rays, secondary rays, random rays
= reflection/refraction, ambient occlusion, path tracing

= Performance gain increases as number of rays increases
= beneficial for high resolution images and anti-aliasing

. ey
- 4‘”‘, : gj[ y - A : p -
area light, specular reflection ambient occlusion (AO) path tracing, depth of field 14
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Outline

= Proposed Method

15
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Overview of Our Method
] A

»
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[ Ray Sampling
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[ Partitioning using Cost Function ] E Vi

¥

[ Determining Traversal Order J

' first second

[Traversal with Skip Ray FiIteringJ g
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Overview of Our Method
] A
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Ray Sampling

* Trace a small subset of active rays : sample rays

= ray sampling is performed if number of active rays is
sufficiently large

active rays sample rays

|
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N

b 4

ray sampling i‘\‘v

—)
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Ray Sampling

= Subdivide bounding volume into bins
[Wald 2007]

74
21

partitioning candidates 19
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Ray Sampling
= Calculate center of triangle’s axis-aligned bounding box
[Wald 2007]
center of AABB
RE | o 3

W Tanl Tan Tam
p| [« ] (o] €] (b [€)] |Ib] €
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Ray Sampling

= Partition set of triangles into two disjoint subsets

— — < —_—

Come ) R
§

21



Ray Sampling

= Partition set of triangles into two disjoint subsets

me
N
b 4

22



Ray Sampling

= Calculate intersection ratio a for each bounding volume
= ratio of sample rays intersecting each bounding volume

sample ray
— r | ‘ | . ‘—I

g
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intersection ratios
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Ray Sampling

= Calculate entry distance for each bounding volume

= distance from ray origin to nearest intersection point

entry distances

y

left bounding volume is closer
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Ray Sampling

= Count closer sample rays for each bounding volume

= number of sample rays with smaller entry distances

fl

M

2O

L f

2 2 0

number of closer sample rays
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Overview of Our Method

[ Partitioning using Cost Function ] E E
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Partitioning using Cost Function

= Minimize cost function for efficient partitioning
C(V - {V,,Vr}) =|Cr + Ci((pL N, + prNR)

constant

\ 4

C(V - {V.,Vr}) = pLNy + prNg

|4
- V,V,,Vp | bounding volumes
v Cr, C costs of ray/BV, ray/triangle intersections
N;, Np numbers of trianglesin V;, Vp
Q: Ve D1, PR probabilities of rays intersecting I/}, Vp
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Cost Function of Previous DACRT Method

= Surface Area Heuristic (SAH) approximates probabilities
with ratios of surface areas

SA(V,) SA(Vp)
c(V Vi, Vpt) = N; + N
SA(V) | surface area of bounding volume V

SAH provides
good estimation

uniform distribution

SAH provides
poor estimation

7 v

% Ve

non-uniform distribution

VR

our method
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Partitioning using Cost Function

= Estimate probabilities of ray hit using intersection ratios
= use actual distribution of rays for partitioning

C(V - {V,Vg}) =|az| N, ‘|‘% Ng

v‘
. B>
b <

C =14/3

=
N

C=16/3 .4
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Overview of Our Method

[ Determining Traversal Order J Zi

first second

30



Wakayama Univ. VCL

Traversal Order Determination

= Traverse bounding volume with larger number of closer
sample rays first

= additional operation is only a comparison

number of closer sample rays traverse right bounding volume first

l—O
o

&i
I\
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Overview of Our Method

[Traversal with Skip Ray FiIteringJ g
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Inefficient Case of Ray Filtering

= Most of active rays intersect bounding volume

active rays of parent node active rays of current node

ray filtering

parent node current node

L

skip ray filtering
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Cost Metric for Ray Filtering

" Cost C;,,; for ray filtering
Cine = Nrabev

Cy,, :ray/BV intersection test cost

Nqy active rays N4y active rays

S ;i_\ ray

',4\\\}’ ﬂ
b §

intersection ratio «
parent node current node
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Cost Metric for Ray Filtering

" Cost C;,,; for ray filtering
Cine = Nrabev + aNrayCchilchhild

C.niiqg ‘child node/ray intersection test cost

N4y active rays aNpqy active rays

NN
NN

. N
o

current node N pi1q child nodes35
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Cost Metric for Skip Ray Filtering

= Cost (g ) for skip ray filtering

Cskip = 0
Nqy active rays N;qy active rays
NN | skip ra = |
' \\ p ray 'Q

<

parent node current node

36
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Cost Metric for Skip Ray Filtering

= Cost (g for skip ray filtering

Cskip — 0 + Nray CcnitaNchita

C.niiqg ‘child node/ray intersection test cost

Nqy active rays Ny active rays

NN
NN

. N
o

current node N pi1q child nodes37




Determine Skip Ray Filtering

0 Skip ray filtering if Cint > Cskip

= Skipping criterion for intersection ratio «

va

NcnitaCenita

a>1

= Skipping criterion for a non-leaf node of binary BVH

a > 0.5
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Outline

= Results
= Conclusions and Future Work
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Computational conditions
CPU : Intel Core i7 2.67GHz

Computational times of ray tracing
= single thread with SSE
= 40962 image (rendered as 5122 with 64 MSAA)
= ray generation, shading are not included

Comparison with Afra’s method
= SAH cost function/with ray filtering

Comparison with Mora’s method

40



: Wakayama Univ. VCL

Results (1/3)

= Our method accelerates ray tracing by a factor of 2

= primary rays-secondary rays
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Sibenik (75K tri.)
point light / specular reflection  area light / specular reflection
1.86x (27.3s/14.7s) 1.94x (22.3s/11.5s) 41




Results (2/3)

= Our method accelerates ray tracing by a factor of 2
= primary rays-secondary rays-random rays

Sponza (262K tri.) San Miguel (3.3M tri.)

path tracing path tracing/depth of field
1.39x (136s5/98s) 1.25x (216s/173s) 42




Results (3/3)

= Acceleration ratio increases for high resolution images

acceleration ratio
(=

acceleration ratio
=

acceleration ratio

acceleration rati
o
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Performance Comparison to Mora’s Method

= Coherent rays using conic packets optimization
= conic packets cannot be applied to secondary/random rays

= Incoherent rays for path tracing
= our method outperforms Mora’s method

1.85 times faster!
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point light path tracing

Mora's Ours Mora's Ours
Mora’s method primary + shadow rays

- - random rays
Core i7 3GHz Core i7 2.67GHz one point |ight source path tracing 44
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Conclusions and Future Work

= Efficient DACRT algorithm using ray sampling
= exploit distribution of rays for partitioning and traversal
= derive cost metric to skip inefficient ray filtering

= accelerate many types of rays by up to a factor of 2
— reflection, ambient occlusion, area light, depth of field, path tracing

= efficient for high resolution images with anti-aliasing

" Future work
= multi-threading implementation
= GPU implementation
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