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Introduction

 Recent advances in ray tracing

 construct acceleration data structures before ray tracing

 grid, kd-tree, bounding volume hierarchy (BVH)

 acceleration data structures require extensive memory 

 required memory is not determined before construction

Wakayama Univ. VCL
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Divide-And-Conquer Ray Tracing (DACRT)

 Ray tracing based on divide-and-conquer algorithm

 trace rays and construct acceleration data structures
simultaneously

 no storage cost for acceleration data structures

 required memory is minimal and deterministic
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[Mora 2011]

[Keller et al. 2011] [Mora 2011] [Afra 2012]
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Divide-And-Conquer Ray Tracing (DACRT)

 Solve intersection problem between rays and primitives 
using divide-and-conquer algorithm

 triangles are used as primitives
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set of rays set of triangles

bounding 
volume
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Divide-And-Conquer Ray Tracing (DACRT)

 Partition a set of triangles into subsets of triangles

 space partitioning (kd-tree)

 object partitioning (BVH) 
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Divide-And-Conquer Ray Tracing (DACRT)

 Partition a set of rays intersecting bounding volume

Wakayama Univ. VCL

ray filtering

active rays
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Divide-And-Conquer Ray Tracing (DACRT)

 Partition a set of rays intersecting bounding volume
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Divide-And-Conquer Ray Tracing (DACRT)

 Solve intersection problem directly

 if numbers of rays or triangles are sufficiently small
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Divide-And-Conquer Ray Tracing (DACRT)

 Solve intersection problem directly

 if numbers of rays or triangles are sufficiently small
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Problems of Previous DACRT Methods

 Subdivide problems based on triangle distribution only

 partition triangles assuming uniform distribution of rays

 inefficient for concentrated distribution of rays

Wakayama Univ. VCL
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partitioning based on 
distribution of triangles only

partitioning based on 
distributions of triangles and rays



Problems of Previous DACRT Methods

 Ray filtering may not reduce number of active rays

 require many ray/bounding volume intersection tests

 ray filtering is computationally expensive
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ray filtering

only one ray is reduced

inefficient case of ray filtering



Contributions of Our DACRT Method

 Accelerate ray tracing using ray sampling

 efficient partitioning and ray traversal

 Derive a new cost metric to avoid inefficient ray filtering

 simple but efficient
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Features of Our DACRT Method

 Accelerate tracing of many types of rays by a factor of 2

 primary rays, secondary rays, random rays

 reflection/refraction, ambient occlusion, path tracing

 Performance gain increases as number of rays increases

 beneficial for high resolution images and anti-aliasing
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Overview of Our Method
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Ray Sampling

 Trace a small subset of active rays : sample rays

 ray sampling is performed if number of active rays is 
sufficiently large
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ray sampling

active rays sample rays
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Ray Sampling

 Subdivide bounding volume into bins 
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[Wald 2007]

bin

19partitioning candidates



Ray Sampling

 Calculate center of triangle’s axis-aligned bounding box
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[Wald 2007]
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Ray Sampling

 Partition set of triangles into two disjoint subsets

Wakayama Univ. VCL
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Ray Sampling

 Partition set of triangles into two disjoint subsets
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Ray Sampling

 Calculate intersection ratio 𝛼 for each bounding volume

 ratio of sample rays intersecting each bounding volume
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sample ray
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Ray Sampling

 Calculate entry distance for each bounding volume

 distance from ray origin to nearest intersection point
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entry distances 

24

left bounding volume is closer



Ray Sampling

 Count closer sample rays for each bounding volume

 number of sample rays with smaller entry distances

Wakayama Univ. VCL
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Overview of Our Method
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Partitioning using Cost Function

 Minimize cost function for efficient partitioning
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𝐶 𝑉 → 𝑉𝐿 , 𝑉𝑅 = 𝐶𝑇 + 𝐶𝐼(𝑝𝐿𝑁𝐿 + 𝑝𝑅𝑁𝑅)

𝑉, 𝑉𝐿, 𝑉𝑅 bounding volumes

𝐶𝑇 , 𝐶𝐼 costs of ray/BV, ray/triangle intersections 

𝑁𝐿, 𝑁𝑅 numbers of triangles in 𝑉𝐿, 𝑉𝑅

𝑝𝐿, 𝑝𝑅 probabilities of rays intersecting 𝑉𝐿, 𝑉𝑅

𝑉

𝑉𝐿 𝑉𝑅
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constant

𝐶 𝑉 → 𝑉𝐿 , 𝑉𝑅 = 𝑝𝐿𝑁𝐿 + 𝑝𝑅𝑁𝑅



Cost Function of Previous DACRT Method

 Surface Area Heuristic (SAH) approximates probabilities 
with ratios of surface areas

Wakayama Univ. VCL

𝑆𝐴 𝑉 surface area of bounding volume 𝑉

𝐶 𝑉 → 𝑉𝐿 , 𝑉𝑅 =
𝑆𝐴 𝑉𝐿
𝑆𝐴 𝑉

𝑁𝐿 +
𝑆𝐴 𝑉𝑅
𝑆𝐴 𝑉

𝑁𝑅
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𝑉

𝑉𝐿

𝑉𝑅

our method

𝑉

𝑉𝐿

𝑉𝑅

uniform distribution

SAH provides 
good estimation

𝑉

𝑉𝐿

𝑉𝑅

non-uniform distribution

SAH provides 
poor estimation



Partitioning using Cost Function

 Estimate probabilities of ray hit using intersection ratios

 use actual distribution of rays for partitioning
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𝐶 𝑉 → 𝑉𝐿 , 𝑉𝑅 = 𝛼𝐿 𝑁𝐿+ 𝛼𝑅 𝑁𝑅
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Traversal Order Determination

 Traverse bounding volume with larger number of closer 
sample rays first

 additional operation is only a comparison

Wakayama Univ. VCL

number of closer sample rays traverse right bounding volume first
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Inefficient Case of Ray Filtering

 Most of active rays intersect bounding volume
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ray filtering

current node parent node 

active rays of parent node active rays of current node 
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Cost Metric for Ray Filtering

 Cost 𝐶𝑖𝑛𝑡 for ray filtering
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𝐶𝑖𝑛𝑡 = 𝑁𝑟𝑎𝑦𝐶𝑏𝑣 + 𝛼𝑁𝑟𝑎𝑦𝐶𝑐ℎ𝑖𝑙𝑑𝑁𝑐ℎ𝑖𝑙𝑑

𝐶𝑏𝑣 ∶ray/BV intersection test cost

current node 

𝛼𝑁𝑟𝑎𝑦 active rays

parent node 

𝑁𝑟𝑎𝑦 active rays

ray 
filtering
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Cost Metric for Ray Filtering

 Cost 𝐶𝑖𝑛𝑡 for ray filtering
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𝐶𝑖𝑛𝑡 = 𝑁𝑟𝑎𝑦𝐶𝑏𝑣 + 𝛼𝑁𝑟𝑎𝑦𝐶𝑐ℎ𝑖𝑙𝑑𝑁𝑐ℎ𝑖𝑙𝑑

current node 

𝛼𝑁𝑟𝑎𝑦 active rays
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𝑁𝑐ℎ𝑖𝑙𝑑 child nodes 

𝛼𝑁𝑟𝑎𝑦 active rays

parent node 

𝑁𝑟𝑎𝑦 active rays

ray 
filtering

𝐶𝑐ℎ𝑖𝑙𝑑 ∶child node/ray intersection test cost



Cost Metric for Skip Ray Filtering

 Cost 𝐶𝑠𝑘𝑖𝑝 for skip ray filtering

Wakayama Univ. VCL

𝐶𝑠𝑘𝑖𝑝 = 0 + 𝑁𝑟𝑎𝑦𝐶𝑐ℎ𝑖𝑙𝑑𝑁𝑐ℎ𝑖𝑙𝑑

current node 

𝑁𝑟𝑎𝑦 active rays

36
parent node 

𝑁𝑟𝑎𝑦 active rays

skip ray 
filtering



Cost Metric for Skip Ray Filtering

 Cost 𝐶𝑠𝑘𝑖𝑝 for skip ray filtering
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𝐶𝑠𝑘𝑖𝑝 = 0 + 𝑁𝑟𝑎𝑦𝐶𝑐ℎ𝑖𝑙𝑑𝑁𝑐ℎ𝑖𝑙𝑑

current node 

𝑁𝑟𝑎𝑦 active rays

37
parent node 

𝑁𝑟𝑎𝑦 active rays

skip ray 
filtering

𝑁𝑐ℎ𝑖𝑙𝑑 child nodes 

𝑁𝑟𝑎𝑦 active rays

𝐶𝑐ℎ𝑖𝑙𝑑 ∶child node/ray intersection test cost



Determine Skip Ray Filtering

 Skip ray filtering if 𝐶𝑖𝑛𝑡 > 𝐶𝑠𝑘𝑖𝑝

 Skipping criterion for intersection ratio 𝛼

 Skipping criterion for a non-leaf node of binary BVH 
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𝛼 > 1 −
𝐶𝑏𝑣

𝑁𝑐ℎ𝑖𝑙𝑑𝐶𝑐ℎ𝑖𝑙𝑑

𝛼 > 0.5
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Computational conditions

 CPU : Intel Core i7 2.67GHz

 Computational times of ray tracing 

 single thread with SSE

 40962 image (rendered as 5122 with 64 MSAA)

 ray generation, shading are not included

 Comparison with Afra’s method 

 SAH cost function/with ray filtering

 Comparison with Mora’s method

Wakayama Univ. VCL
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Results (1/3)

 Our method accelerates ray tracing by a factor of 2

 primary rays⋅secondary rays

Wakayama Univ. VCL
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Sibenik (75K tri.)

point light / specular reflection area light / specular reflection

1.86x (27.3s/14.7s) 1.94x (22.3s/11.5s)



Results (2/3)

 Our method accelerates ray tracing by a factor of 2

 primary rays⋅secondary rays⋅random rays

Wakayama Univ. VCL
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Sponza (262K tri.) San Miguel (3.3M tri.)

path tracing path tracing/depth of field

1.39x (136s/98s) 1.25x (216s/173s)



Results (3/3)

 Acceleration ratio increases for high resolution images

Wakayama Univ. VCL
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Performance Comparison to Mora’s Method
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 Coherent rays using conic packets optimization
 conic packets cannot be applied to secondary/random rays

 Incoherent rays for path tracing
 our method outperforms Mora’s method

1.85 times faster!

primary + shadow rays
one point light source

random rays
path tracing

point light path tracing

Mora’s method Ours

Core i7 3GHz Core i7 2.67GHz



Conclusions and Future Work

 Efficient DACRT algorithm using ray sampling

 exploit distribution of rays for partitioning and traversal

 derive cost metric to skip inefficient ray filtering

 accelerate many types of rays by up to a factor of 2 
– reflection, ambient occlusion, area light, depth of field, path tracing

 efficient for high resolution images with anti-aliasing

 Future work

 multi-threading implementation

 GPU implementation

Wakayama Univ. VCL
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