
EFFICIENT BVH CONSTRUCTION

VIA APPROXIMATE

AGGLOMERATIVE CLUSTERING

Yan Gu, Yong He,

Kayvon Fatahalian, Guy Blelloch

Carnegie Mellon University

BVH CONSTRUCTION GOALS

 High quality: produce BVHs of comparable (or better)

quality to full-sweep SAH algorithms.

 High performance: faster construction than widely used

SAH-based algorithms that use binning.

OUR APPROACH

 An agglomerative clustering (bottom-up) based

construction algorithm.

 Motivated by [Walter et al. 2008] .

HIERARCHICAL CLUSTERING EXAMPLE

Source data points:

HIERARCHICAL CLUSTERING EXAMPLE

𝑑 ,

𝑑(𝑖, 𝑗) = distance from cluster 𝑖 to cluster 𝑗

Source data points:

HIERARCHICAL CLUSTERING EXAMPLE

Source data points:

HIERARCHICAL CLUSTERING EXAMPLE

Resulting cluster hierarchy:

Source data points:

HIERARCHICAL CLUSTERING EXAMPLE

Resulting cluster hierarchy:

Source data points:

HIERARCHICAL CLUSTERING EXAMPLE

Resulting cluster hierarchy:

Source data points:

HIERARCHICAL CLUSTERING EXAMPLE

Resulting cluster hierarchy:

Source data points:

HIERARCHICAL CLUSTERING IS A GENERAL

TECHNIQUE FOR ORGANIZING DATA.

Domain Clustered primitives

Linguistic Languages

Image retrieval Images

Anthropology Surnames / races

Biology Genes / species

Social network People / behaviors

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Elements to cluster = scene primitives

 Distance = surface area of aggregate bounding box

 Compute the nearest neighbor to each primitive.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Find the “closest” pair of primitives and combine

them into a cluster.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Update nearest neighbor links.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Repeat: combine closest remaining clusters.

 Repeat: combine closest remaining clusters.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Repeat: combine closest remaining clusters.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Repeat: combine closest remaining clusters.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Repeat: combine closest remaining clusters.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Continue until one cluster remains (BVH root).

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Good: often higher quality BVH than sweep builds

 Bad: lower performance than binned builds

 KD-tree search/update in each clustering step.

 Data-dependent parallel execution.

OBSERVATION

 Most computation occurs at the lowest levels of the

BVH of the construction process when the number

of clusters is large (near leaves) .

Top
ℎ

2
levels:

Number of nodes ≈ 𝑛

Bottom
ℎ

2
levels:

Number of nodes ≈ 𝑛

CONTRIBUTION
a

Approximate Agglomerative Clustering (AAC)

 New algorithm for BVH construction that is work

efficient, parallelizable, and produces high-quality

trees.

OUR MAIN IDEA

 Restrict nearest neighbor search to a small subset

of neighboring scene elements.

OUR MAIN IDEA

 Restrict nearest neighbor search to a small subset

of neighboring scene elements.

OUR MAIN IDEA

 Restrict nearest neighbor search to a small subset

of neighboring scene elements.

PHASE 1: PRIMITIVE PARTITIONING

(“DOWNWARD/DIVIDE PHASE”)

Computation graph:

𝛿 = 4

Primitive partitioning:

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

AAC IS AN APPROXIMATION TO THE TRUE

AGGLOMERATIVE CLUSTERING SOLUTION.

Computation graph: Primitive partitioning:

AAC IS AN APPROXIMATION TO THE TRUE

AGGLOMERATIVE CLUSTERING SOLUTION.

Computation graph: Primitive partitioning:

 𝛿: stopping criterion for stop partitioning (maximum

of primitives in leaf regions).

 𝑓(𝑛): function that determines the number of

clusters to generate in each graph node (𝑛 is the

number of primitives in the corresponding region.)

AAC HAS TWO PARAMETERS

 𝑓 𝑛 = 1: close to spatial bisection BVH.

DETERMINING HOW MUCH TO CLUSTER

 𝑓 𝑛 = 𝑛: all primitives pushed to top of computation graph,

AAC solution is same as true agglomerative clustering.

DETERMINING HOW MUCH TO CLUSTER

DETERMINING HOW MUCH TO CLUSTER

 We use 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

AAC HAS LINEAR TIME COMPLEXITY

 Downward phase is linear.

 Upward clustering phase:

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

 Assumptions:

 𝛿 is a small constant.

 Time complexity on each graph node is 𝑂 𝑛2 [Olson 1995],

where 𝑛 is the number of input primitives in this node.

COMPLEXITY ANALYSIS

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

Work done at leaves:
𝑁

𝛿
nodes, 𝑂 𝑓 𝛿 2 =

𝑂 𝛿2𝛼 computation each.

𝑂 𝑁𝛿2𝛼−1 work total.

COMPLEXITY ANALYSIS

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

𝑂 𝐶 work total.

Let

𝐶 = 𝑁𝛿2𝛼−1

Work done at leaves:
𝑁

𝛿
nodes, 𝑂 𝑓 𝛿 2 =

𝑂 𝛿2𝛼 computation each.

LINEAR TIME COMPLEXITY

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

𝑁

2𝛿
nodes,

𝑂 𝑓 2𝛿 2 = 𝑂 2𝛿 2𝛼

computation each.

𝑂 𝑁 2𝛿 2𝛼−1 work total.

𝑂 𝐶 work total.

Let

𝐶 = 𝑁𝛿2𝛼−1

LINEAR TIME COMPLEXITY

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

𝑂 𝐶 ⋅ 𝑟 work total.

Let

𝐶 = 𝑁𝛿2𝛼−1

𝑟 = 22𝛼−1 < 1

𝑂 𝐶 work total.

LINEAR TIME COMPLEXITY

Geometrically decreasing.

𝑂 𝐶 ⋅ 𝑟 work total.

Let

𝐶 = 𝑁𝛿2𝛼−1

𝑟 = 22𝛼−1 < 1

𝑂 𝐶 work total.

𝑂 𝐶 ⋅ 𝑟2 work total.

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

0

2500

5000

7500

0 2M 4M 6M 8M

THEORY MEETS PRACTICE:

WE OBSERVE LINEAR SCALING WITH SCENE SIZE

Scene Triangle Count

B
V

H
 C

o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

m
s
)

San Miguel

Buddha

Half-Life

Conference

Sponza/Fairy

AAC-HQ BVH Construction Time (Single Core)

PARAMETERS

 Trade off BVH quality and construction speed by

changing 𝛿 and 𝑓 in the algorithm.

 We proposed 2 sets of parameters:

 AAC-HQ (high quality): 𝛿 = 20, 𝑓 𝑛 =
𝛿0.6

2
⋅ 𝑛0.4;

 AAC-Fast: 𝛿 = 4, 𝑓 𝑛 =
𝛿0.7

2
⋅ 𝑛0.3.

IMPLEMENTATION DETAILS

 Parallelization:

 Algorithm is divide-and-conquer, so very easy to

parallelize.

 Key optimizations possible:

 Reduce redundant computation of cluster distances;

 Reducing data movement;

 Sub-tree flatting for improved tree quality.

EVALUATION

SETUP

 We compared 5 CPU implementations

SAH
A standard top-down full-sweep SAH build

[MacDonald and Booth 1990]

SAH-BIN A top-down “binned” SAH build using at most 16 bins

along the longest axis [Wald 2007]

Local-Ord Locally-ordered agglomerative clustering

[Walter et al. 2008]

AAC-HQ AAC with high quality settings: 𝛿 = 20, 𝑓 𝑛 = 3𝑛0.4

AAC-Fast AAC configured for performance: 𝛿 = 4, 𝑓 𝑛 = 1.3𝑛0.3

SCENES

Sponza Half-Life

San MiguelFairy

Conference

Buddha

TREE COST COMPARISON

 Cost = number of traversal steps + intersection tests

during ray tracing.

1.2

1.0

0.8

0.6

0.4

0.2

0

R
a

y
-t

ra
c
in

g
 c

o
s
t

SAH SAH-BIN Local-Ord AAC-HQ AAC-Fast

Sponza Fairy Conference Buddha Half-Life San Miguel

AAC-HQ produces BVHs that have similar

cost as those produced by true agglomerative

clustering builds.

1.2

1.0

0.8

0.6

0.4

0.2

0

R
a

y
-t

ra
c
in

g
 c

o
s
t

Local-Ord AAC-HQ

Sponza Fairy Conference Buddha Half-Life San Miguel

SAH SAH-BIN AAC-Fast

AAC-Fast produces BVHs with equal or lower

cost than the full sweep build in all cases

except Buddha.

1.2

1.0

0.8

0.6

0.4

0.2

0

R
a

y
-t

ra
c
in

g
 c

o
s
t

Local-Ord AAC-HQ AAC-Fast

Sponza Fairy Conference Buddha Half-Life San Miguel

SAH SAH-BIN

AAC-Fast produces BVHs with equal or lower

cost than the full sweep build in all cases

except Buddha.

1.2

1.0

0.8

0.6

0.4

0.2

0

R
a

y
-t

ra
c
in

g
 c

o
s
t

SAH SAH-BIN Local-Ord AAC-HQ AAC-Fast

Sponza Fairy Conference Buddha Half-Life San Miguel

AAC IS ABLE TO MAKE PARTITIONS THAT ARE

NOT DETERMINED BY PARTITION PLANES.

BVH CONSTRUCTION TIME (SINGLE CORE)

 AAC-HQ build times are five to six times lower than Local-Ord

(while maintaining comparable BVH quality)

2.5

2.0

1.5

1.0

0.5

0

N
o

rm
a

liz
e

d
 E

x
e

c
.
T

im
e

SAH SAH-BIN Local-Ord AAC-HQ AAC-Fast

Sponza Fairy Conference Buddha Half-Life San Miguel

Normalized BVH Build Time (Single Core)

..
.

..
.

..
.

..
.

..
.

..
.

AAC-HQ build times are comparable to SAH-BIN

AAC-Fast build times up to four times faster than SAH-BIN

1.0

0.75

0.5

0.25

0

N
o

rm
a

liz
e

d
 E

x
e

c
.
T

im
e

SAH SAH-BIN Local-Ord AAC-HQ AAC-Fast

Sponza Fairy Conference Buddha Half-Life San Miguel

Normalized BVH Build Time (Single Core)

AAC PARALLEL EXECUTION SPEEDUP

AAC-HQ achieves nearly linear speedup out to 16

cores, and a 34× speedup on 40 cores

AAC 32-CORE SPEEDUP

AAC-HQ AAC-Fast

Tri

Count
1 core 32 cores 1 core 32 cores

Sponza 67 K 52 a 2 (24.0) 20 a 1 (21.5)

Fairy 174 K 117 a 5 (24.5) 44 a 2 (22.4)

Conference 283 K 225 a 10 (23.6) 70 a 4 (19.4)

Buddha 1.1 M 1,101 a 43 (25.8) 397 a 16 (24.0)

Half-Life 1.2 M 1,080 a 42 (25.7) 359 a 15 (22.8)

San Miguel 7.9 M 7,350 a 298 (24.6) 2,140 a 99 (21.6)

AAC Build Execution Times (milliseconds) and Parallel Speedup

SUMMARY

AAC algorithm: BVH construction via an

approximation to agglomerative clustering of

scene primitives

 Comparable quality BVH to full sweep SAH build

 Up to four-times faster than binned SAH build

 Amenable to parallelism on many-core CPUs

 Fast initial organization of scene primitives via Morton

codes

 AAC: to define constraints on clustering

 Karras13: to define initial BVH

 “Brute-force” optimization of local sub-structures

 AAC: brute-force local clustering in each node

 Karras13: brute-force enumeration of treelet structures

 In both: more flexible partitions than defined by spatial

partition plane

 AAC does not address triangle splitting

SIMILARITY TO KARRAS13 (NEXT TALK)

LOOKING FORWARD

 Have not yet explored parallelization of AAC on GPUs

 Post-process BVH optimizations can be applied on a

smaller set of clusters generated by AAC

 Clustering in low dimensional space has many other

applications in computer graphics including:

 Lighting (e.g., Light Cuts)

 N-body simulation

 Collision detection

Thank you

We acknowledge the support of:

The National Science Foundation (CCF-1018188)

Intel Labs Academic Research Office

NVIDIA corporation

BVHs produced by AAC methods realize greater

benefit for shadow rays than diffuse bounce rays.

1.0

0.8

0.6

0.4

0.2

0

R
a

y
-t

ra
c
in

g
 c

o
s
t

Diffuse Rays Shadow Rays

AAC-HQ BVH cost (normalized to full sweep SAH)

Sponza Fairy Conference Buddha Half-Life San Miguel

WHY AAC PERFORMS WORSE FOR

BUDDHA.

