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BVH CONSTRUCTION GOALS

 High quality: produce BVHs of comparable (or better) 

quality to full-sweep SAH algorithms.

 High performance: faster construction than widely used 

SAH-based algorithms that use binning.

OUR APPROACH

 An agglomerative clustering (bottom-up) based 

construction algorithm.

 Motivated by [Walter et al. 2008] .
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HIERARCHICAL CLUSTERING IS A GENERAL

TECHNIQUE FOR ORGANIZING DATA.

Domain Clustered primitives

Linguistic Languages

Image retrieval Images

Anthropology Surnames / races

Biology Genes / species

Social network People / behaviors



BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Elements to cluster = scene primitives

 Distance = surface area of aggregate bounding box



 Compute the nearest neighbor to each primitive.
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BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Find the “closest” pair of primitives and combine 

them into a cluster.



BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Update nearest neighbor links.



BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Repeat: combine closest remaining clusters.
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BVH BUILD USING AGGLOMERATIVE CLUSTERING
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 Repeat: combine closest remaining clusters.



BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Continue until one cluster remains (BVH root).



BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Good: often higher quality BVH than sweep builds

 Bad: lower performance than binned builds

 KD-tree search/update in each clustering step.

 Data-dependent parallel execution.



OBSERVATION

 Most computation occurs at the lowest levels of the 

BVH of the construction process when the number 

of clusters is large (near leaves) .

Top 
ℎ

2
levels:

Number of nodes ≈ 𝑛

Bottom 
ℎ

2
levels:

Number of nodes ≈ 𝑛



CONTRIBUTION
a

Approximate Agglomerative Clustering (AAC)

 New algorithm for BVH construction that is work 

efficient, parallelizable, and produces high-quality 

trees.
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of neighboring scene elements.
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PHASE 1: PRIMITIVE PARTITIONING

(“DOWNWARD/DIVIDE PHASE”)

Computation graph:

𝛿 = 4

Primitive partitioning:
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AAC IS AN APPROXIMATION TO THE TRUE

AGGLOMERATIVE CLUSTERING SOLUTION.
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AAC IS AN APPROXIMATION TO THE TRUE

AGGLOMERATIVE CLUSTERING SOLUTION.

Computation graph: Primitive partitioning:



 𝛿: stopping criterion for stop partitioning (maximum 

of primitives in leaf regions).

 𝑓(𝑛): function that determines the number of 

clusters to generate in each graph node (𝑛 is the 

number of primitives in the corresponding region.) 

AAC HAS TWO PARAMETERS



 𝑓 𝑛 = 1:  close to spatial bisection BVH.

DETERMINING HOW MUCH TO CLUSTER



 𝑓 𝑛 = 𝑛:  all primitives pushed to top of computation graph, 

AAC solution is same as true agglomerative clustering.

DETERMINING HOW MUCH TO CLUSTER



DETERMINING HOW MUCH TO CLUSTER

 We use 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.



AAC HAS LINEAR TIME COMPLEXITY

 Downward phase is linear.

 Upward clustering phase:

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

 Assumptions:

 𝛿 is a small constant.

 Time complexity on each graph node is 𝑂 𝑛2 [Olson 1995], 

where 𝑛 is the number of input primitives in this node.



COMPLEXITY ANALYSIS

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

Work done at leaves: 
𝑁

𝛿
nodes, 𝑂 𝑓 𝛿 2 =

𝑂 𝛿2𝛼 computation each.

𝑂 𝑁𝛿2𝛼−1 work total.
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 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.
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nodes, 
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LINEAR TIME COMPLEXITY

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

𝑂 𝐶 ⋅ 𝑟 work total.

Let 

𝐶 = 𝑁𝛿2𝛼−1

𝑟 = 22𝛼−1 < 1

𝑂 𝐶 work total.



LINEAR TIME COMPLEXITY

Geometrically decreasing.

𝑂 𝐶 ⋅ 𝑟 work total.

Let 

𝐶 = 𝑁𝛿2𝛼−1

𝑟 = 22𝛼−1 < 1

𝑂 𝐶 work total.

𝑂 𝐶 ⋅ 𝑟2 work total.

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.
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PARAMETERS

 Trade off BVH quality and construction speed by 

changing 𝛿 and 𝑓 in the algorithm.

 We proposed 2 sets of parameters: 

 AAC-HQ (high quality): 𝛿 = 20, 𝑓 𝑛 =
𝛿0.6

2
⋅ 𝑛0.4;

 AAC-Fast: 𝛿 = 4, 𝑓 𝑛 =
𝛿0.7

2
⋅ 𝑛0.3.



IMPLEMENTATION DETAILS

 Parallelization:

 Algorithm is divide-and-conquer, so very easy to 

parallelize.

 Key optimizations possible:

 Reduce redundant computation of cluster distances;

 Reducing data movement;

 Sub-tree flatting for improved tree quality.



EVALUATION



SETUP

 We compared 5 CPU implementations

SAH
A standard top-down full-sweep SAH build 

[MacDonald and Booth 1990] 

SAH-BIN A top-down “binned” SAH build using at most 16 bins 

along the longest axis [Wald 2007] 

Local-Ord Locally-ordered agglomerative clustering 

[Walter et al. 2008] 

AAC-HQ AAC with high quality settings: 𝛿 = 20, 𝑓 𝑛 = 3𝑛0.4

AAC-Fast AAC configured for performance: 𝛿 = 4, 𝑓 𝑛 = 1.3𝑛0.3



SCENES

Sponza Half-Life

San MiguelFairy

Conference

Buddha



TREE COST COMPARISON

 Cost = number of traversal steps + intersection tests 

during ray tracing.
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AAC-HQ produces BVHs that have similar 

cost as those produced by true agglomerative 

clustering builds.
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AAC-Fast produces BVHs with equal or lower 

cost than the full sweep build in all cases 

except Buddha.
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AAC-Fast produces BVHs with equal or lower 

cost than the full sweep build in all cases 

except Buddha.
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AAC IS ABLE TO MAKE PARTITIONS THAT ARE

NOT DETERMINED BY PARTITION PLANES.



BVH CONSTRUCTION TIME (SINGLE CORE)

 AAC-HQ build times are five to six times lower than Local-Ord

(while maintaining comparable BVH quality)
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AAC-HQ build times are comparable to SAH-BIN

AAC-Fast build times up to four times faster than SAH-BIN 
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AAC PARALLEL EXECUTION SPEEDUP

AAC-HQ achieves nearly linear speedup out to 16 

cores, and a 34× speedup on 40 cores 



AAC 32-CORE SPEEDUP

AAC-HQ AAC-Fast

Tri

Count
1 core 32 cores 1 core 32 cores

Sponza 67 K   52 a 2 (24.0) 20  a 1 (21.5)

Fairy 174 K 117 a 5 (24.5) 44  a 2 (22.4)

Conference 283 K 225 a 10 (23.6) 70  a 4 (19.4)

Buddha 1.1 M 1,101 a 43 (25.8) 397  a 16 (24.0)

Half-Life 1.2 M 1,080 a 42 (25.7) 359  a 15 (22.8)

San Miguel 7.9 M 7,350 a 298 (24.6) 2,140  a 99 (21.6)

AAC Build Execution Times (milliseconds) and Parallel Speedup



SUMMARY

AAC algorithm: BVH construction via an 

approximation to agglomerative clustering of 

scene primitives

 Comparable quality BVH to full sweep SAH build

 Up to four-times faster than binned SAH build

 Amenable to parallelism on many-core CPUs



 Fast initial organization of scene primitives via Morton 

codes

 AAC: to define constraints on clustering

 Karras13: to define initial BVH

 “Brute-force” optimization of local sub-structures

 AAC: brute-force local clustering in each node

 Karras13: brute-force enumeration of treelet structures

 In both: more flexible partitions than defined by spatial 

partition plane

 AAC does not address triangle splitting

SIMILARITY TO KARRAS13 (NEXT TALK)



LOOKING FORWARD

 Have not yet explored parallelization of AAC on GPUs

 Post-process BVH optimizations can be applied on a 

smaller set of clusters generated by AAC

 Clustering in low dimensional space has many other 

applications in computer graphics including:

 Lighting (e.g., Light Cuts)

 N-body simulation

 Collision detection
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BVHs produced by AAC methods realize greater 

benefit for shadow rays than diffuse bounce rays.
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WHY AAC PERFORMS WORSE FOR

BUDDHA.


