
EFFICIENT BVH CONSTRUCTION

VIA APPROXIMATE

AGGLOMERATIVE CLUSTERING

Yan Gu, Yong He,

Kayvon Fatahalian, Guy Blelloch

Carnegie Mellon University

BVH CONSTRUCTION GOALS

 High quality: produce BVHs of comparable (or better)

quality to full-sweep SAH algorithms.

 High performance: faster construction than widely used

SAH-based algorithms that use binning.

OUR APPROACH

 An agglomerative clustering (bottom-up) based

construction algorithm.

 Motivated by [Walter et al. 2008] .

HIERARCHICAL CLUSTERING EXAMPLE

Source data points:

HIERARCHICAL CLUSTERING EXAMPLE

𝑑 ,

𝑑(𝑖, 𝑗) = distance from cluster 𝑖 to cluster 𝑗

Source data points:

HIERARCHICAL CLUSTERING EXAMPLE

Source data points:

HIERARCHICAL CLUSTERING EXAMPLE

Resulting cluster hierarchy:

Source data points:

HIERARCHICAL CLUSTERING EXAMPLE

Resulting cluster hierarchy:

Source data points:

HIERARCHICAL CLUSTERING EXAMPLE

Resulting cluster hierarchy:

Source data points:

HIERARCHICAL CLUSTERING EXAMPLE

Resulting cluster hierarchy:

Source data points:

HIERARCHICAL CLUSTERING IS A GENERAL

TECHNIQUE FOR ORGANIZING DATA.

Domain Clustered primitives

Linguistic Languages

Image retrieval Images

Anthropology Surnames / races

Biology Genes / species

Social network People / behaviors

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Elements to cluster = scene primitives

 Distance = surface area of aggregate bounding box

 Compute the nearest neighbor to each primitive.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Find the “closest” pair of primitives and combine

them into a cluster.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Update nearest neighbor links.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Repeat: combine closest remaining clusters.

 Repeat: combine closest remaining clusters.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Repeat: combine closest remaining clusters.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Repeat: combine closest remaining clusters.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Repeat: combine closest remaining clusters.

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Continue until one cluster remains (BVH root).

BVH BUILD USING AGGLOMERATIVE CLUSTERING

[WALTER ET AL. 2008]

 Good: often higher quality BVH than sweep builds

 Bad: lower performance than binned builds

 KD-tree search/update in each clustering step.

 Data-dependent parallel execution.

OBSERVATION

 Most computation occurs at the lowest levels of the

BVH of the construction process when the number

of clusters is large (near leaves) .

Top
ℎ

2
levels:

Number of nodes ≈ 𝑛

Bottom
ℎ

2
levels:

Number of nodes ≈ 𝑛

CONTRIBUTION
a

Approximate Agglomerative Clustering (AAC)

 New algorithm for BVH construction that is work

efficient, parallelizable, and produces high-quality

trees.

OUR MAIN IDEA

 Restrict nearest neighbor search to a small subset

of neighboring scene elements.

OUR MAIN IDEA

 Restrict nearest neighbor search to a small subset

of neighboring scene elements.

OUR MAIN IDEA

 Restrict nearest neighbor search to a small subset

of neighboring scene elements.

PHASE 1: PRIMITIVE PARTITIONING

(“DOWNWARD/DIVIDE PHASE”)

Computation graph:

𝛿 = 4

Primitive partitioning:

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

Each node = combine

input into 𝑓(𝑛) clusters

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

PHASE 2: AGGLOMERATIVE CLUSTERING

(“UPWARD PHASE”)

Computation graph: Primitive partitioning:

AAC IS AN APPROXIMATION TO THE TRUE

AGGLOMERATIVE CLUSTERING SOLUTION.

Computation graph: Primitive partitioning:

AAC IS AN APPROXIMATION TO THE TRUE

AGGLOMERATIVE CLUSTERING SOLUTION.

Computation graph: Primitive partitioning:

 𝛿: stopping criterion for stop partitioning (maximum

of primitives in leaf regions).

 𝑓(𝑛): function that determines the number of

clusters to generate in each graph node (𝑛 is the

number of primitives in the corresponding region.)

AAC HAS TWO PARAMETERS

 𝑓 𝑛 = 1: close to spatial bisection BVH.

DETERMINING HOW MUCH TO CLUSTER

 𝑓 𝑛 = 𝑛: all primitives pushed to top of computation graph,

AAC solution is same as true agglomerative clustering.

DETERMINING HOW MUCH TO CLUSTER

DETERMINING HOW MUCH TO CLUSTER

 We use 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

AAC HAS LINEAR TIME COMPLEXITY

 Downward phase is linear.

 Upward clustering phase:

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

 Assumptions:

 𝛿 is a small constant.

 Time complexity on each graph node is 𝑂 𝑛2 [Olson 1995],

where 𝑛 is the number of input primitives in this node.

COMPLEXITY ANALYSIS

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

Work done at leaves:
𝑁

𝛿
nodes, 𝑂 𝑓 𝛿 2 =

𝑂 𝛿2𝛼 computation each.

𝑂 𝑁𝛿2𝛼−1 work total.

COMPLEXITY ANALYSIS

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

𝑂 𝐶 work total.

Let

𝐶 = 𝑁𝛿2𝛼−1

Work done at leaves:
𝑁

𝛿
nodes, 𝑂 𝑓 𝛿 2 =

𝑂 𝛿2𝛼 computation each.

LINEAR TIME COMPLEXITY

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

𝑁

2𝛿
nodes,

𝑂 𝑓 2𝛿 2 = 𝑂 2𝛿 2𝛼

computation each.

𝑂 𝑁 2𝛿 2𝛼−1 work total.

𝑂 𝐶 work total.

Let

𝐶 = 𝑁𝛿2𝛼−1

LINEAR TIME COMPLEXITY

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

𝑂 𝐶 ⋅ 𝑟 work total.

Let

𝐶 = 𝑁𝛿2𝛼−1

𝑟 = 22𝛼−1 < 1

𝑂 𝐶 work total.

LINEAR TIME COMPLEXITY

Geometrically decreasing.

𝑂 𝐶 ⋅ 𝑟 work total.

Let

𝐶 = 𝑁𝛿2𝛼−1

𝑟 = 22𝛼−1 < 1

𝑂 𝐶 work total.

𝑂 𝐶 ⋅ 𝑟2 work total.

 Let 𝑓 𝑛 = 𝑐𝑛𝛼, where 0 < 𝛼 < 0.5.

0

2500

5000

7500

0 2M 4M 6M 8M

THEORY MEETS PRACTICE:

WE OBSERVE LINEAR SCALING WITH SCENE SIZE

Scene Triangle Count

B
V

H
 C

o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

m
s
)

San Miguel

Buddha

Half-Life

Conference

Sponza/Fairy

AAC-HQ BVH Construction Time (Single Core)

PARAMETERS

 Trade off BVH quality and construction speed by

changing 𝛿 and 𝑓 in the algorithm.

 We proposed 2 sets of parameters:

 AAC-HQ (high quality): 𝛿 = 20, 𝑓 𝑛 =
𝛿0.6

2
⋅ 𝑛0.4;

 AAC-Fast: 𝛿 = 4, 𝑓 𝑛 =
𝛿0.7

2
⋅ 𝑛0.3.

IMPLEMENTATION DETAILS

 Parallelization:

 Algorithm is divide-and-conquer, so very easy to

parallelize.

 Key optimizations possible:

 Reduce redundant computation of cluster distances;

 Reducing data movement;

 Sub-tree flatting for improved tree quality.

EVALUATION

SETUP

 We compared 5 CPU implementations

SAH
A standard top-down full-sweep SAH build

[MacDonald and Booth 1990]

SAH-BIN A top-down “binned” SAH build using at most 16 bins

along the longest axis [Wald 2007]

Local-Ord Locally-ordered agglomerative clustering

[Walter et al. 2008]

AAC-HQ AAC with high quality settings: 𝛿 = 20, 𝑓 𝑛 = 3𝑛0.4

AAC-Fast AAC configured for performance: 𝛿 = 4, 𝑓 𝑛 = 1.3𝑛0.3

SCENES

Sponza Half-Life

San MiguelFairy

Conference

Buddha

TREE COST COMPARISON

 Cost = number of traversal steps + intersection tests

during ray tracing.

1.2

1.0

0.8

0.6

0.4

0.2

0

R
a

y
-t

ra
c
in

g
 c

o
s
t

SAH SAH-BIN Local-Ord AAC-HQ AAC-Fast

Sponza Fairy Conference Buddha Half-Life San Miguel

AAC-HQ produces BVHs that have similar

cost as those produced by true agglomerative

clustering builds.

1.2

1.0

0.8

0.6

0.4

0.2

0

R
a

y
-t

ra
c
in

g
 c

o
s
t

Local-Ord AAC-HQ

Sponza Fairy Conference Buddha Half-Life San Miguel

SAH SAH-BIN AAC-Fast

AAC-Fast produces BVHs with equal or lower

cost than the full sweep build in all cases

except Buddha.

1.2

1.0

0.8

0.6

0.4

0.2

0

R
a

y
-t

ra
c
in

g
 c

o
s
t

Local-Ord AAC-HQ AAC-Fast

Sponza Fairy Conference Buddha Half-Life San Miguel

SAH SAH-BIN

AAC-Fast produces BVHs with equal or lower

cost than the full sweep build in all cases

except Buddha.

1.2

1.0

0.8

0.6

0.4

0.2

0

R
a

y
-t

ra
c
in

g
 c

o
s
t

SAH SAH-BIN Local-Ord AAC-HQ AAC-Fast

Sponza Fairy Conference Buddha Half-Life San Miguel

AAC IS ABLE TO MAKE PARTITIONS THAT ARE

NOT DETERMINED BY PARTITION PLANES.

BVH CONSTRUCTION TIME (SINGLE CORE)

 AAC-HQ build times are five to six times lower than Local-Ord

(while maintaining comparable BVH quality)

2.5

2.0

1.5

1.0

0.5

0

N
o

rm
a

liz
e

d
 E

x
e

c
.
T

im
e

SAH SAH-BIN Local-Ord AAC-HQ AAC-Fast

Sponza Fairy Conference Buddha Half-Life San Miguel

Normalized BVH Build Time (Single Core)

..
.

..
.

..
.

..
.

..
.

..
.

AAC-HQ build times are comparable to SAH-BIN

AAC-Fast build times up to four times faster than SAH-BIN

1.0

0.75

0.5

0.25

0

N
o

rm
a

liz
e

d
 E

x
e

c
.
T

im
e

SAH SAH-BIN Local-Ord AAC-HQ AAC-Fast

Sponza Fairy Conference Buddha Half-Life San Miguel

Normalized BVH Build Time (Single Core)

AAC PARALLEL EXECUTION SPEEDUP

AAC-HQ achieves nearly linear speedup out to 16

cores, and a 34× speedup on 40 cores

AAC 32-CORE SPEEDUP

AAC-HQ AAC-Fast

Tri

Count
1 core 32 cores 1 core 32 cores

Sponza 67 K 52 a 2 (24.0) 20 a 1 (21.5)

Fairy 174 K 117 a 5 (24.5) 44 a 2 (22.4)

Conference 283 K 225 a 10 (23.6) 70 a 4 (19.4)

Buddha 1.1 M 1,101 a 43 (25.8) 397 a 16 (24.0)

Half-Life 1.2 M 1,080 a 42 (25.7) 359 a 15 (22.8)

San Miguel 7.9 M 7,350 a 298 (24.6) 2,140 a 99 (21.6)

AAC Build Execution Times (milliseconds) and Parallel Speedup

SUMMARY

AAC algorithm: BVH construction via an

approximation to agglomerative clustering of

scene primitives

 Comparable quality BVH to full sweep SAH build

 Up to four-times faster than binned SAH build

 Amenable to parallelism on many-core CPUs

 Fast initial organization of scene primitives via Morton

codes

 AAC: to define constraints on clustering

 Karras13: to define initial BVH

 “Brute-force” optimization of local sub-structures

 AAC: brute-force local clustering in each node

 Karras13: brute-force enumeration of treelet structures

 In both: more flexible partitions than defined by spatial

partition plane

 AAC does not address triangle splitting

SIMILARITY TO KARRAS13 (NEXT TALK)

LOOKING FORWARD

 Have not yet explored parallelization of AAC on GPUs

 Post-process BVH optimizations can be applied on a

smaller set of clusters generated by AAC

 Clustering in low dimensional space has many other

applications in computer graphics including:

 Lighting (e.g., Light Cuts)

 N-body simulation

 Collision detection

Thank you

We acknowledge the support of:

The National Science Foundation (CCF-1018188)

Intel Labs Academic Research Office

NVIDIA corporation

BVHs produced by AAC methods realize greater

benefit for shadow rays than diffuse bounce rays.

1.0

0.8

0.6

0.4

0.2

0

R
a

y
-t

ra
c
in

g
 c

o
s
t

Diffuse Rays Shadow Rays

AAC-HQ BVH cost (normalized to full sweep SAH)

Sponza Fairy Conference Buddha Half-Life San Miguel

WHY AAC PERFORMS WORSE FOR

BUDDHA.

