
High Performance Graphics 2013 - 7/19/13

Out-Of-Core Construction
of Sparse Voxel Octrees

Jeroen Baert, Ares Lagae
& Philip Dutré

Computer Graphics Group, KU Leuven, Belgium

Out-Of-Core Construction of Sparse Voxel Octrees 2 / 34

Voxel-related research

● Voxel Ray Casting
– Gigavoxels (Crassin, 2009-...)

– Efficient SVO's (Laine, Karras, 2010)

● Voxel Cone Tracing
– Indirect Illumination (Crassin, 2011)

● Voxel-based Visibility
– Voxelized Shadow Volumes

(Wyman, 2013, later today!)

● ...

C
ra

ss
in

 2
00

9

La
in

e
/

K
ar

ra
s

20
10

C
ra

ss
in

 2
01

1

Out-Of-Core Construction of Sparse Voxel Octrees 3 / 34

Why voxels?

● Regular structure
● Hierarchical representation in

Sparse Voxel Octrees (SVO's)
– Level of Detail / Filtering

● Generic representation for
geometry and appearance
– In a single data structure

C
re

at
iv

e
 C

o
m

m
on

s
–

 W
ik

ip
e

di
a

Out-Of-Core Construction of Sparse Voxel Octrees 4 / 34

Polygon mesh to SVO

● We want large, highly
detailed SVO scenes

● Where do we find
content?

● Let's voxelize massive
polygon meshes
– Majority of current

content pipelines is
polygon-based

Out-Of-Core Construction of Sparse Voxel Octrees 5 / 34

What do we want?

● Algorithm requirements:
– Need an out-of-core method

● Because polygon mesh &
intermediary structures could be >> system memory

– Data should be streamed in/out
● from disk / network / other process

– Ideally: out-of-core as fast as in-core

Algorithm

Polygon Mesh Sparse Voxel Octree

Out-Of-Core Construction of Sparse Voxel Octrees 6 / 34

Pipeline construction (1)

● Voxelization step
– Polygon mesh → Voxel grid

● Followed by SVO construction step
– Voxel grid → Sparse Voxel Octree

Voxelization

Polygon Mesh Sparse Voxel Octree

SVO
Construction

Out-Of-Core Construction of Sparse Voxel Octrees 7 / 34

Pipeline construction (2)

● Key insight:
– If voxel grid is Morton-ordered

– SVO construction can be done out-of-core
● Logarithmic in memory usage ~ octree size
● In a streaming manner

– So voxelization step should deliver ordered voxels

Voxelization

Polygon Mesh Sparse Voxel Octree

SVO
Construction

Morton
Ordered

Grid

Out-Of-Core Construction of Sparse Voxel Octrees 8 / 34

Pipeline construction (3)

● High-resolution 3D voxel grid may be >>
system memory
– So partitioning step (into subgrids) is needed

– Seperate triangle streams for each subgrid

Voxelization

Polygon Mesh Sparse Voxel Octree

SVO
Construction

Morton
Ordered

Grid

Partitioning
Mesh
Parts

Out-Of-Core Construction of Sparse Voxel Octrees 9 / 34

Final Pipeline

● Now, every step in detail ...

Voxelization

Polygon Mesh Sparse Voxel Octree

SVO
Construction

Morton
Ordered

Grid

Partitioning
Mesh
Parts

Out-Of-Core Construction of Sparse Voxel Octrees 10 / 34

Morton order / Z-order

● Linearization of n-dimensional grid

– Post-order depth-first traversal of 2n-tree

● Space-filling curve, Z-shaped

Out-Of-Core Construction of Sparse Voxel Octrees 11 / 34

Morton order / Z-order

● Hierarchical in nature
● Cell at position (x,y)

→ Morton code
– Efficiently computed

– (x,y,z) = (5,9,1)
→ (0101,1001,0001)
→ 010001000111
→ 1095th cell along Z-curve

Out-Of-Core Construction of Sparse Voxel Octrees 12 / 34

Partitioning subprocess

● Partitioning (1 linear pass)
– Into power-of-2 subgrids until it fits in memory

– Subgrids temporarily stored on disk

– Subgrids correspond to contiguous range in Morton
order

● If we voxelize subgrids in Morton order, output
will be Morton-ordered

Voxelization

Polygon Mesh Sparse Voxel Octree

SVO
Construction

Morton
Ordered

Grid

Partitioning
Mesh
Parts

Out-Of-Core Construction of Sparse Voxel Octrees 13 / 34

Voxelization subprocess (1)

● Voxelize each subgrid in Morton order
– Input: Subgrid triangle stream

● Each triangle voxelized independently

– Output: Morton codes of non-empty cells
● Typically, majority of grid is empty

Voxelization

Polygon Mesh Sparse Voxel Octree

SVO
Construction

Morton
Ordered

Grid

Partitioning
Mesh
Parts

Out-Of-Core Construction of Sparse Voxel Octrees 14 / 34

Voxelization subprocess (2)

● We use a simple voxelization method
– But any method that works one triangle at a time

will do

111011010100
101111010111

...H
u

an
g

et
 A

l.

Morton codes of non-empty cells

Out-Of-Core Construction of Sparse Voxel Octrees 15 / 34

Out-of-core SVO Construction

● Input: Morton-ordered voxel grid
● Output: SVO nodes + referenced dataevel

Morton code

Voxelization

Polygon Mesh Sparse Voxel Octree

SVO
Construction

Morton
Ordered

Grid

Partitioning
Mesh
Parts

Out-Of-Core Construction of Sparse Voxel Octrees 16 / 34

SVO Construction algorithm in 2D

0

0 3...

1

4 7...

2

8 11...

3

12 15...

● Required: queues of 2d nodes / octree level
– Ex: 20483 grid → 11 * 8 octree nodes-l

 Octree representationSVO Builder queues

Input
position

In Memory / On-disk
Level 0

Level 1

Level 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Out-Of-Core Construction of Sparse Voxel Octrees 17 / 34

SVO Construction algorithm in 2D

● Read Morton codes 0 → 3 (+ voxel data)
– Store them in level 2 queue

– Level 2 queue = full

0 3

 Octree representationSVO Builder queues

0 1 2 3

Level 0

Level 1

Level 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Out-Of-Core Construction of Sparse Voxel Octrees 18 / 34

SVO Construction algorithm in 2D
● Create internal parent node

– With level 1 Morton code 0

– Store parent-child relations

– Write non-empty level 2 nodes to disk+clear level 2

 Octree representationSVO Builder queues

0 1 2 3

0 0

0 3

Level 0

Level 1

Level 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Out-Of-Core Construction of Sparse Voxel Octrees 19 / 34

SVO Construction algorithm in 2D

● Read Morton codes 4 → 7 (+ voxel data)
– Store them in level 2 queue

 Octree representationSVO Builder queues

4 5 6 7

0 0

0 3 4 7...

Level 0

Level 1

Level 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Out-Of-Core Construction of Sparse Voxel Octrees 20 / 34

SVO Construction algorithm in 2D
● Create internal parent node

– With level 1 Morton code 1

– Store parent-child relations (there are none)

– Write non-empty level 2 nodes to disk+clear level 2

 Octree representationSVO Builder queues

4 5 6 7

0 1 0

0 3...

1

Level 0

Level 1

Level 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 7...

Out-Of-Core Construction of Sparse Voxel Octrees 21 / 34

SVO Construction algorithm in 2D

● Same for Morton codes 8 → 11

 Octree representationSVO Builder queues

0 1 0

0 3

1 2

9

2

Level 0

Level 1

Level 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Out-Of-Core Construction of Sparse Voxel Octrees 22 / 34

SVO Construction algorithm in 2D

● Same for Morton codes 12 → 15

 Octree representationSVO Builder queues

0 1 2 3 3

12 15...

Level 0

Level 1

Level 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0 3

1 2

9

Out-Of-Core Construction of Sparse Voxel Octrees 23 / 34

SVO Construction algorithm in 2D
● Now level 1 is full

– Create parent node (root node)

– Store parent-child relations

– Write non-empty level 1 nodes to disk+clear level 1

 Octree representationSVO Builder queues

0 1 2 3

R R

... ...

Level 0

Level 1

Level 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3

12 15...

0

0 3

2

9

1

Out-Of-Core Construction of Sparse Voxel Octrees 24 / 34

SVO Construction: optimization

● Lots of processing time for empty nodes
– Sparseness = typical for high-res voxelized meshes

● Insight for optimization
– Pushing back 2d empty nodes

in a queue at level n

= Pushing back 1 empty
node at level n-1

n-1

n

..
.

SVO Builder queues

Out-Of-Core Construction of Sparse Voxel Octrees 25 / 34

SVO Construction: optimization

● Implementation details in paper
● Optimization exploits sparseness of voxelized

meshes

● Speedup: two orders of magnitude
– Building SVO from grid:

● David: 471 vs 0.55 seconds
● San Miguel: 453 vs 1.69 seconds

Out-Of-Core Construction of Sparse Voxel Octrees 26 / 34

Results: Tests

● Resolution: 20483

● Memory limits
– 8 Gb (in-core)

– 1 Gb (out-of-core)

– 128 Mb (out-of-core)

● Models
– David (8.25 M polys)

– San Marco (7.88 M polys)

– XYZRGB Dragon (7.2 M polys)

Out-Of-Core Construction of Sparse Voxel Octrees 27 / 34

Results: Out-Of-Core performance

● Out-Of-Core method = ~ as fast as In-Core
– Even when available memory is 1/64

Out-Of-Core Construction of Sparse Voxel Octrees 28 / 34

Results: Time breakdown

● Partitioning speedup from skipping empty space

Out-Of-Core Construction of Sparse Voxel Octrees 29 / 34

Results: Extremely large models

● 40963 – In-core: 64 Gb
● Atlas model

– 17.42 Gb, 507 M tris

– < 11 min at 1 Gb

● St. Matthew model
– 13.1 Gb, 372 M tris

– < 9 min at 1 Gb

Out-Of-Core Construction of Sparse Voxel Octrees 30 / 34

Results: SVO Construction

● SVO output stream
– Good locality of reference

● Nonempty siblings on same level always stored next to
each other

– Nodes separated from data itself (separation
hot/cold data)

● Using data pointers + offsets as reference

Out-Of-Core Construction of Sparse Voxel Octrees 31 / 34

Appearance

● Pipeline: binary voxelization
● Extend with appearance data?

– Interpolate vertex attributes
(color, normals, tex)

– Propagate appearance
data upwards

● Global data access ↔ Out-Of-Core algorithms
– Multi-pass approach

D
ec

re
as

in
g

S
V

O
 le

ve
l

Out-Of-Core Construction of Sparse Voxel Octrees 32 / 34

Conclusion

● Voxelization and SVO construction algorithm
– Out-of-core as fast as in-core

– Support for extremely large meshes

● Future work
– Combine with GPU method to speed up

voxelization

– Handle global appearance data

Out-Of-Core Construction of Sparse Voxel Octrees 33 / 34

Thanks!

● Source code / binaries
will be available at project
page

● Contact

– jeroen.baert @ cs.kuleuven.be

– @jbaert

● Acknowledgements:

– Jeroen Baert funded by Agency for Innovation by
Science and Technology in Flanders (IWT), Ares Lagae
is a Postdoctoral Fellow of the Research Foundation –
Flanders (FWO), David / Atlas / St. Matthew models :
Digital Michelangelo project, San Miguel model :
Guillermo M. Leal Llaguno (Evolucien VIsual)

Out-Of-Core Construction of Sparse Voxel Octrees 34 / 34

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

