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Voxel-related research

● Voxel Ray Casting
– Gigavoxels (Crassin, 2009-...)

– Efficient SVO's (Laine, Karras, 2010)

● Voxel Cone Tracing
– Indirect Illumination (Crassin, 2011)

● Voxel-based Visibility
– Voxelized Shadow Volumes

(Wyman, 2013, later today!)

● ...
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Why voxels?

● Regular structure
● Hierarchical representation in 

Sparse Voxel Octrees (SVO's) 
– Level of Detail / Filtering

● Generic representation for 
geometry and appearance
– In a single data structure
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Polygon mesh to SVO

● We want large, highly 
detailed SVO scenes

● Where do we find 
content?

● Let's voxelize massive 
polygon meshes
– Majority of current 

content pipelines is 
polygon-based
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What do we want?

● Algorithm requirements:
– Need an out-of-core method

● Because polygon mesh & 
intermediary structures could be >> system memory

– Data should be streamed in/out
● from disk / network / other process

– Ideally: out-of-core as fast as in-core

Algorithm

Polygon Mesh Sparse Voxel Octree
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Pipeline construction (1)

● Voxelization step
– Polygon mesh → Voxel grid

● Followed by SVO construction step
– Voxel grid → Sparse Voxel Octree

Voxelization

Polygon Mesh Sparse Voxel Octree

SVO 
Construction
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Pipeline construction (2)

● Key insight:
– If voxel grid is Morton-ordered

– SVO construction can be done out-of-core
● Logarithmic in memory usage ~ octree size
● In a streaming manner

– So voxelization step should deliver ordered voxels

Voxelization

Polygon Mesh Sparse Voxel Octree

SVO 
Construction

Morton 
Ordered 

Grid
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Pipeline construction (3)

● High-resolution 3D voxel grid may be >> 
system memory
– So partitioning step (into subgrids) is needed

– Seperate triangle streams for each subgrid

Voxelization

Polygon Mesh Sparse Voxel Octree

SVO 
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Morton 
Ordered 

Grid

Partitioning
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Parts
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Final Pipeline

● Now, every step in detail ...

Voxelization

Polygon Mesh Sparse Voxel Octree

SVO 
Construction

Morton 
Ordered 

Grid
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Morton order / Z-order

● Linearization of n-dimensional grid

– Post-order depth-first traversal of 2n-tree

● Space-filling curve, Z-shaped
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Morton order / Z-order

● Hierarchical in nature
● Cell at position (x,y) 

→ Morton code 
– Efficiently computed 

– (x,y,z) = (5,9,1) 
→ (0101,1001,0001) 
→ 010001000111 
→ 1095th cell along Z-curve
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Partitioning subprocess

● Partitioning (1 linear pass)
– Into power-of-2 subgrids until it fits in memory

– Subgrids temporarily stored on disk

– Subgrids correspond to contiguous range in Morton 
order

● If we voxelize subgrids in Morton order, output 
will be Morton-ordered

Voxelization
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SVO 
Construction

Morton 
Ordered 

Grid

Partitioning
Mesh
Parts



Out-Of-Core Construction of Sparse Voxel Octrees 13 / 34 

Voxelization subprocess (1)

● Voxelize each subgrid in Morton order
– Input: Subgrid triangle stream

● Each triangle voxelized independently 

– Output: Morton codes of non-empty cells
● Typically, majority of grid is empty

Voxelization
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Voxelization subprocess (2)

● We use a simple voxelization method
– But any method that works one triangle at a time 

will do

111011010100
101111010111
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Out-of-core SVO Construction

● Input: Morton-ordered voxel grid
● Output: SVO nodes + referenced dataevel 

Morton code

Voxelization
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SVO Construction algorithm in 2D

0

0 3...

1

4 7...

2

8 11...

3

12 15...

● Required: queues of 2d nodes / octree level
– Ex: 20483 grid → 11 * 8 octree nodes-l

 Octree representationSVO Builder queues

Input 
position

In Memory / On-disk
Level 0

Level 1

Level 2

 0    1   2    3    4    5    6    7    8    9   10  11  12  13  14  15
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SVO Construction algorithm in 2D

● Read Morton codes 0 → 3 (+ voxel data)
– Store them in level 2 queue

– Level 2 queue = full

0 3

 Octree representationSVO Builder queues

0 1 2 3

Level 0

Level 1

Level 2

 0    1   2    3    4    5    6    7    8    9   10  11  12  13  14  15
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SVO Construction algorithm in 2D
● Create internal parent node

– With level 1 Morton code 0

– Store parent-child relations

– Write non-empty level 2 nodes to disk+clear level 2

 Octree representationSVO Builder queues

0 1 2 3

0 0

0 3

Level 0

Level 1

Level 2

 0    1   2    3    4    5    6    7    8    9   10  11  12  13  14  15
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SVO Construction algorithm in 2D

● Read Morton codes 4 → 7  (+ voxel data)
– Store them in level 2 queue

 Octree representationSVO Builder queues

4 5 6 7

0 0

0 3 4 7...

Level 0

Level 1

Level 2
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SVO Construction algorithm in 2D
● Create internal parent node

– With level 1 Morton code 1

– Store parent-child relations (there are none)

– Write non-empty level 2 nodes to disk+clear level 2

 Octree representationSVO Builder queues

4 5 6 7

0 1 0

0 3...

1

Level 0

Level 1

Level 2
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SVO Construction algorithm in 2D

● Same for Morton codes 8 → 11

 Octree representationSVO Builder queues

0 1 0

0 3

1 2
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SVO Construction algorithm in 2D

● Same for Morton codes 12 → 15

 Octree representationSVO Builder queues

0 1 2 3 3
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SVO Construction algorithm in 2D
● Now level 1 is full

– Create parent node (root node)

– Store parent-child relations

– Write non-empty level 1 nodes to disk+clear level 1 

 Octree representationSVO Builder queues

0 1 2 3

R R
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SVO Construction: optimization

● Lots of processing time for empty nodes
– Sparseness = typical for high-res voxelized meshes

● Insight for optimization
– Pushing back 2d empty nodes 

in a queue at level n

= Pushing back 1 empty 
node at level n-1

n-1

n

..
.

SVO Builder queues
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SVO Construction: optimization

● Implementation details in paper
● Optimization exploits sparseness of voxelized 

meshes

● Speedup: two orders of magnitude
– Building SVO from grid:

● David: 471 vs 0.55 seconds
● San Miguel: 453 vs 1.69 seconds
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Results: Tests

● Resolution: 20483

● Memory limits
– 8 Gb (in-core)

– 1 Gb (out-of-core)

– 128 Mb (out-of-core)

● Models
– David (8.25 M polys)

– San Marco (7.88 M polys)

– XYZRGB Dragon (7.2 M polys)
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Results: Out-Of-Core performance

● Out-Of-Core method = ~ as fast as In-Core
– Even when available memory is 1/64
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Results: Time breakdown

● Partitioning speedup from skipping empty space
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Results: Extremely large models

● 40963 – In-core: 64 Gb
● Atlas model

– 17.42 Gb, 507 M tris

– < 11 min at 1 Gb

● St. Matthew model
– 13.1 Gb, 372 M tris

– < 9 min at 1 Gb
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Results: SVO Construction

● SVO output stream
– Good locality of reference

● Nonempty siblings on same level always stored next to 
each other

– Nodes separated from data itself (separation 
hot/cold data)

● Using data pointers + offsets as reference
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Appearance

● Pipeline: binary voxelization
● Extend with appearance data?

– Interpolate vertex attributes 
(color, normals, tex)

– Propagate appearance 
data upwards

● Global data access ↔ Out-Of-Core algorithms
– Multi-pass approach
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Conclusion

● Voxelization and SVO construction algorithm
– Out-of-core as fast as in-core

– Support for extremely large meshes

● Future work
– Combine with GPU method to speed up 

voxelization

– Handle global appearance data
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Thanks!

● Source code / binaries
will be available at project 
page

● Contact

– jeroen.baert @ cs.kuleuven.be

– @jbaert

● Acknowledgements:

– Jeroen Baert funded by Agency for Innovation by 
Science and Technology in Flanders (IWT), Ares Lagae 
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