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Preface: “thoughts from a graphics expat”




“Simulation”?



Terminology: Embodied Al

“The embodiment hypothesis is the idea that intelligence emerges in
the interaction of an agent with an environment and as a result of
sensorimotor activity.”

The Development of Embodied Cognition: Six Lessons from Babies
[Smith & Gasser 2005]



Embodied Agents

Physically embodied agents
taking actions in the world

= Human-like Al
* Active perception

* Long-term planning
* Learning by interaction

Image credits: DRC-Hubo robot [DARPA Robotics Challenge], [Adrian Murray / Trevillion Images]



Simulation for embodied Al

Physically embodied agents Virtual embodied agents

taking actions in the world taking actions in a virtual world



Internet Al Embodied Al

Image Credit: Image-Net
Slide credit: Abhishek Das Image Credit: Lockheed Martin; DARPA Robotics Challenge



From internet image datasets to 3D simulators

%+ PASCALZ

Common Objects in Context

Dataset =2 Simulator 2 Task 2 Benchmark



Year 2017: exciting times!



3D simulators galore!
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HoME Platform House3D MINOS Al2-THOR
[Brodeur et al. 2017] [Wu et al. 2017] [Savva et al. 2017] [Kolve et al. 2017]

Matterport3D Simulator Gibson Environment InteriorNet / ViSim
[Anderson et al. 2018] [Zamir et al. 2018] [Li et al. 2018]



3D simulators galore!

Environment 3D Large-Scale Customizable Physics Photorealistic Actionable
Atari

OpenAl Universe
Malmo

DeepMind Lab

S X

VizDoom
Matterport3D

MINOS (Matterport3D)
House3D

MINOS (SUNCG)

HoME

L € € L X L KX
<

S
S X

Al2-THOR

Table from AI2-THOR [Kolve et al. 2017]



Impact: research tasks and communities

Visual navigation Instruction following Robotic manipulation

Dist to Goal:
53 steps

Leave the bedroom, and enter the kitchen. Walk
forward, and take a left at the couch. Stop in
front of the window.

[Gupta et al. 2017] [Anderson et al. 2018] [James et al. 2019]




Common: black-boxed 3D game engine binary
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Al2-THOR [Kolve et al. 2017]
architecture example sketch

10 — 60 FPS



However: not for human eyeballs!
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Can we do better?



Habitat: A Platform for Embodied Al Research

aihabitat.org
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http://aihabitat.org/

Habitat: standardizing the Embodied Al “software stack”

Habitat Platform

,
Tasks Habitat-API
EmbodiedQA Language grounding Interactive QA Instruction following Visual Navigation
(Dasetal,2018)  (Hilletal,2017)  (Gordonetal,2018)  (Andersonetal,2018)  (Zhuetal, 2017, Guptaetal, 2017) *
P =
Simul |~ Habitat-Si
imulators B abitat-Sim
House3D Al2-THOR MINOS Gibson CHALET
(Wuetal,, 2017) (Kolve et al., 2017) (Savva et al,, 2017) (Zamir et al., 2018) (Yan et al,, 2018) *
Datasets Generic Dataset
: Support
Replica (Straub et al,, 2019) Matterport3D (Chang et al., 2017) 2D-3D-S (Armeni et al., 2017) \







Attention to speed
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Did speed matter?



Learned vs classical navigation agents

To Learn or Not to Learn:
Analyzing the Role of Learning for Navigation in Virtual Environments

Noriyuki Kojima
University of Michigan
2260 Hayward St, Ann Arbor, MI 48109

kojimanoQumich.edu

Abstract

In this paper we focus on the task of geometric naviga-
tion, i.e. navigation when ground-truth 3D information is
available. Specifically, we explore the dichotomy between
”learning” and “coding” for this task. We construct a
hand-coded navigating agent, and demonstrate that it out-
performs state-of-the-art learning based agents on two pop-
ular benchmarks, MINOS([37] and Stanford large-scale 3D
Indoor Spaces (S3DIS)[2)]. We also observe that as the en-
vironment becomes more challenging, the performance gap
between learning-based and hand coded-agent increases.

Jia Deng
Princeton University
35 Olden St 423, Princeton, NJ 08540

jiadeng@cs.princeton.edu

ods. Therefore, in the context of geometric navigation, the
strengths and weaknesses of “learning” over “coding” are
not clear. In this paper, we attempt to clarify this so that in-
telligent choices can be made while developing real-world
systems.

We construct a hand-coded agent for the task of geomet-
ric navigation and compare its performance with state-of-
the-art learning based methods on two challenging bench-
marks: S3DIS [2] and MINOS [37]. On MINOS, the
UNREAL agent [37] (which is based on deep reinforce-
ment learning) and on S3DIS, the CMP agent [14] (which
uses imitation learning to jointly train a mapper and plan-

Benchmarking Classic and Learned Navigation in Complex 3D Environments

Dmytro Mishkin*
Czech Technical University

Abstract

Navigation research is attracting renewed interest with
the advent of learning-based methods. However, this new
line of work is largely disconnected from well-established
classic navigation approaches. In this paper, we take a
step towards coordinating these two directions of research.
We set up classic and learning-based navigation systems in
common simulated environments and thoroughly evaluate
them in indoor spaces of varying complexity, with access to
different sensory modalities. Additionally, we measure hu-
man performance in the same environments. We find that
a classic pipeline, when properly tuned, can perform very
well in complex cluttered environments. On the other hand,
learned systems can operate more robustly with a limited
sensor suite. Both approaches are still far from human-level
performance.

Alexey Dosovitskiy
Intel Labs

Vladlen Koltun
Intel Labs

Classic pipeline

Learned agent
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Example navigation episodes

Blind Agent Depth Agent
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Back to today: simulators galore part 2!

RLBench IKEA Furniture Assembly SAPIEN iGibson
[James et al. 2019] [Lee et al. 2019] [Xiang et al. 2020] [Xia et al. 2020]




Emerging trends



Emerging trends: interaction

RL.BENCH

THE ROBOT'LEARNING BENCHMARK
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iGibson [Xia et al. 2020] RLBench [James et al. 2019]




Emerging trends: scale (& more speed)

Performance on PointGoal Navigation
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DD-PPO: Learning Near-Perfect PointGoal
Navigators from 2.5 Billion Frames
[Wijmans et al. 2020]
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Emerging trends: multimodality

Where is the
phone?
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Audio-Visual Embodied Navigation [Chen et al. 2020]



Emerging trends: Sim2Real

Are We Making Real Progress in Simulated Environments?
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RoboTHOR [Deitke et al. 2020] Sim2Real Coefficient [Kadian et al. 2020]



Graphics system challenges



Challenge: “fast physics”
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iGibson [Xia et al. 2020] RLBench [James et al. 2019]



Challenge: “GPU cohabitation”
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Challenge: “not for eyeballs”
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Challenge: “asset soup
Al2-THOR Replica

120 virtual rooms 18 near-photorealistic rooms

ShapeNet Matterport3D

65K virtual objects 90 multi-floor house reconstructions
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Al2-THOR [Kolve et al. 2017], Replica [Straub et al. 2019], ShapeNet [Chang et al. 2016], Matterport3D [Chang et al. 2017]




Summary

Trends

* Interaction

* Scale & more speed
* Multimodality

e Sim2Real

Challenges

* “Fast physics”

* “GPU cohabitation”
* “Not for eyeballs”

e “Asset soup”



Takeaway messages

* Growing interest in embodied Al
e Simulation for embodied Al: new frontiers for GFX-ML systems

e Opportunities for broad impact!



Visual Computing @ Simon Fraser University

We’re hiring at all levels! MSc, PhD, postdocs, researchers, faculty ©
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msavva@sfu.ca
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Thank youl!




