
Are we done with hardware ray
tracing?
Or …

How can we make real-time raytracing more pervasive?
Holger Gruen – Principal engineer

XPU Technology and Research group

Intel Corporation

Ray tracing hardware is great!
• It solves real-time problems rasterization can‘t solve efficiently

• Recent DXR games have shown a variety of fantastic ray traced effects

• There is also great progress with regards to denoising

• Yet, ray traced rendering is more than just tracing rays

• BVH management (issues wrt build/refit/streaming)

• Hit point shading (SIMD utilization issues)

⇒Current AAA games need to limit ray tracing

• This talk is about open problems that need to be overcome

• Beyond what just making GPUs faster will give us

• e.g. like we have overcome traversal performance problems

Rasterization can deal with ...
• 1000s of uniquely on-the fly skinned characters

• An animated forest with alpha-tested foliage

• Highly programmable on-the-fly per instance deformations (UE Kite demo)

• (DX12) mesh shaders that generate dynamic geometry on-the-fly

• Dynamic geometry that gets tessellated on-the-fly

• Massive amounts of virtual geometry that gets streamed and
decompressed on-the-fly (see e.g. UE5 demo video)

A simple example (1080p, high end GPU*):

• A test scene with ~19M triangles

• 100 uniquely skinned characters

• 100 uniquely animated trees

• Gbuffer rasterization: ~2.7 ms

• Raytracing cost: ~8.6 ms

• Compute Shader animation: ~2.5 ms

• BLAS updates: ~3.2 ms

• Primary rays: ~2.9 ms (1 ray/pixel)

But what about raytracing?

*NVIDIA® GeForce® RTX® 2080Ti

BVH related issues

BVH building/refitting costs
• BVH updates don‘t yet scale like streamed rasterized geometry

• 225 skinned characters (20k triangles each)

• Rasterization: ~1.8 ms

• Animation + BVH refit: ~6 ms

BVH building/refitting costs
• BVH updates don‘t yet scale like streamed rasterized geometry

• 100 animated (non-rigid) trees (160k triangles each)
• Rasterization: ~2.4 ms
• animation + BVH refit: ~5.8 ms

• Procedural and dynamically tessellated geometry
typically perform worse

High BVH Memory Footprints
• Modern games push a lot of dynamic/procedural geometry!

• A dynamic BVH consumes ~60-80 bytes per triangle

⇒225 uniquely skinned characters (20k tris each) consume ~280MB

⇒100 uniquely animated trees (160k tris each) consume ~980MB

High BVH Memory Footprints
• Static BVHs still use about 30-50 bytes per prim

⇒Raytraced effects can access most of the scene geometry due to secondary rays

⇒The whole scene may need to be in the BVH (pathtracing)

• Near future: UE5 scenes rumored to have billions of triangles

⇒Needs very aggressive view dependent culling

⇒Is current BVH storage/build/update/streaming technology up to this task?

⇒Current AAA games limit BVH complexity and as a result ray tracing

Potential solutions to the above BVH issues
Reduce memory footprints:

• Hardware support for lossy geometry compression (BVH+Traversal)?

Reduce build/refit costs:

• Hardware accelerated builds?

• Support for lazy builds?
• Similar to procedural texture problem:

‘AMFS: Adaptive Multi-Frequency Shading for Future Graphics Processors’, P. Clarberg, R. Toth, J. Hasselgren,
J. Nilsson, T. Akenine-Möller

Reduce memory footprint & build/refit costs:

• Support lazy&caches hardware builds for transient
dynamic or procedural pieces of geometry?

Lazy builds:

Only update nodes

when they are visited

by rays

Coherency & SIMD utilization
issues

• Divergent ray traversal duration/steps for rays
⇒All SIMD lanes blocked until the ray with the highest # of traversal steps returns

• BVH traversal divergence
⇒Can be hidden from shaders by HW traversal units

⇒Of course divergent traversal still taxes the memory hierarchy

• Shader path divergence
⇒SIMD lanes may need to execute different hit shaders

• Divergent resource access in hit shaders
⇒SIMD lanes may need to fetch from diverging resources

Most common coherency & SIMD utilization issues

Lane 0 Lane 1 Lane 2 Lane 3

Assumed SIMD4 GPU

with 4 lanes per wave

Please note that

traversal has way

higher latency then

Texture sampling!

Most common coherency & SIMD utilization
• Divergent ray traversal duration/steps for rays

⇒All SIMD lanes blocked until the ray with the highest # of traversal steps returns

• BVH traversal divergence
⇒Can be hidden from shaders by HW traversal units

⇒Of course divergent traversal still taxes the memory hierarchy

• Shader path divergence
⇒SIMD lanes may need to execute different hit shaders

• Divergent resource access in hit shaders
⇒SIMD lanes may need to fetch from diverging resources

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

2
0
1

2
1
1

2
2
1

2
3
1

2
4
1

2
5
1

Traversal Steps

% Rays

0

20

40

60

80

100

120

140

1 2 4 8 16 32

SIMD Wave Sizes

Avg. highest number of traversal step in a SIMD wave

Camera rays from a DXR games

Most common coherency & SIMD utilization
• Divergent ray traversal duration/steps for rays

⇒All SIMD lanes blocked until the ray with the highest # of traversal steps return

• BVH traversal divergence
⇒Can be hidden from shaders by HW traversal units

⇒Of course divergent traversal still taxes the memory hierarchy

• Shader path divergence
⇒SIMD lanes may need to execute different hit shaders

• Divergent resource access in hit shaders
⇒SIMD lanes may need to fetch from diverging resources

AO rays from a DXR games

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

2
0
1

2
1
1

2
2
1

2
3
1

2
4
1

2
5
1

Traversal steps

% Rays

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32

SIMD Wave size

Avg. highest number of traversal steps in a SIMD wave

Most common coherency & SIMD utilization issues
• Divergent ray traversal duration/steps for rays

⇒All SIMD lanes blocked until the longest ray traversal path is done

• Shader path divergence
⇒SIMD lanes may need to execute different hit/material shaders

• Divergent resource access in hit shaders
⇒SIMD lanes may need to fetch from diverging resources

• BVH traversal divergence
⇒Can be hidden from shaders by HW traversal units

⇒Of course divergent traversal still taxes the memory hierarchy

Different colors

depict different hit

shaders

Lane 0 Lane 1 Lane 2 Lane 3

Most common coherency & SIMD utilization issues
• Divergent ray traversal duration/steps for rays

⇒All SIMD lanes blocked until the longest ray traversal path is done

• Shader path divergence
⇒SIMD lanes may need to execute different hit shaders

• Divergent textures
⇒Same shaders, but SIMD lanes may need to fetch from diverging resources

• BVH traversal divergence
⇒Can be hidden from shaders by HW traversal units

⇒Of course divergent traversal still taxes the memory hierarchy

Lane 0 Lane 1 Lane 2 Lane 3

How to increase coherency & SIMD utilization?
Current solutions:

• Sort rays for more traversal coherency/ less SIMD latency
• e.g. by origin + direction, Morton code, ...

• Sort hit points for coherent shading
• e.g. by material ID, shading model, etc.

• Expensive for multiple bounces
• Hit point streaming can consume cosiderable bandwidth

• High local shared memory footprints may limit your occupancy

How to increase coherency & SIMD utilization?
Potential future solutions:

• Could we do asynchronous raytracing?

• Could hardware bundle coherent shading requests?

Different colors

depict different hit

shaders

Lane 0 Lane 1Wave 0 Lane 0 Lane 1 Wave 1

Lane 0 Lane 1 Lane 0 Lane 1

LOD management issues
Current raytracing hardware allows only limited LOD management

• Crossfading is possible using instance and ray masks (see recent NVIDIA blog)

• Anyhit() shaders allow more programmable fades but are slower

• Geomorphing through refits seems possible but is expensive

Potential future solutions:

• Fully implement a fast traversal shaders stage in hardware?

• See “Flexible Ray Traversal with an Extended Programming Model”
by W. Lee, G. Liktor, K. Vaidyanathan

• Traversal shaders can do flexible LOD selection and more!

Alpha testing is comparably slow
• Hardware traversal gets interrupted to run a shader that computes if a ray vs

triangle intersection is valid

• See our talk on Wednesday:

„Sub-triangle opacity masks for faster ray tracing of transparent objects”

Recognitions
Thanks to

Karthik Vaidyanathan,

Carsten Benthin,

Joshua Barczak

and Gabor Liktor from Intel

who contributed to the above slides.

Q&A

