
Modern GPUs have employed unified shaders, which allow more flexible use 
of the graphics rendering hardware. This trend has recently been realized in 
mobile GPUs [1][2][3]. 

For the best GPU performance, the utilization of unified shader cores and 
fixed-function hardware should be maximized while maintaining load balancing 
among multiple cores.

In order to satisfy this requirement, we propose an effective task-scheduling 
scheme, which has the following two key features: 1) a shader-interleaving 
scheme that can hide latencies by exclusively executing different kernels, and 
2) a task slot-based dynamic load-balancing scheme that evenly distributes 
workloads to the multiple cores. 

Our multi-core unified shader architecture, 
which is an improvement over our previous 
work, the SRP (Samsung Reconfigurable 
Processor)-based GPU [4]. 

Multiple unified shaders can be easily 
implemented as the SRP is reconfigurable. 
Each core includes vertex and pixel processing 
hardware in order to handle both types of data. 
Specifically, these units are batch management 
units (BMUs), primitive assembly (PA) units, tile 
dispatch units (TDUs), fragment generators 
(FGs), and raster operators (ROPs). The tile-
binning unit (TBU) is individually equipped for 
parallel processing. 

The task scheduler (TS) is a newly designed 
unit responsible for dynamic load balancing and 
shader interleaving

An Effective Task Scheduling Scheme for Multi-core Tile based Rendering GPU 
Won-Jong Lee, Seok-Yoon Jung, Shi-Hwa Lee
Embedded Multimedia Group, System Architecture Lab.
SAIT, SAMSUNG ELECTRONICS Co., Ltd.

Motivation Latency Hiding and Load Balancing 

Multi-core Unified Shader Architecture

Results

References

• Shader Interleaving Scheme for Latency Hiding

The GPU drives the fixed-function hardware and the shader cores to 
execute in a fully pipelined manner. Unfortunately, this can cause pipeline 
bubbles because of inconsistent latencies between the hardware and the 
shader stage. If the kernel running on the shader core finishes before the 
hardware stage, the shader core remains idle until the next stream arrives. 

In order to hide these latencies, we propose a shader interleaving that allows 
different kinds of kernels to run exclusively. When a certain kernel (e.g., the 
vertex shader) becomes idle, the other kernel (e.g., the pixel shader) is 
immediately assigned to the shader core and executed without any delays. 
This can greatly improve overall throughput, which in turn leads to faster 
execution.

• Implementation

The prototype GPU, including the proposed scheduler, was verified 
and evaluated by cycle-accurate simulation, RTL simulation, and FPGA 
targeting. The GPU was synthesized for a Xilinx Vertex6 FPGA board 
running at 25Mhz. 

Rightware’s 3DMark Mobile ES [5] and GLBenchmark [6] were used as 
test benchmarks. Various benchmarks having different workload 
characteristics (e.g., Taiji and Egypt: pixel-intensive, Hoverjet: vertex-
intensive) were selected for testing unified shader efficiency.  

Above figure compares the performance of our GPU (4 unified shaders) 
with that of a GPU with non-unified shaders (1 vertex and 3 pixel 
shaders) [4] and having the same number of cores. Our GPU, which 
adopts a scheduling scheme, is 1.2 to 2.8 times faster, thanks to the 
effective combination of latency hiding and dynamic load balancing.

For better performance, we are currently developing a more accurate 
scheduling algorithm that supports multi-threading. Finally, it is 
expected that our GPU, including the proposed scheduler, will be a core 
intellectual property for future application processors.

• Benchmarks

Cyber samurai Taiji Hover jet Egypt Pro

• Performance Evaluation
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1-Shader TBR example - Ideal Case
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1-Shader TBR example – Pipeline Bubbles Case #1

(1 vertex stream per Drawcall, Serialized pipeline)
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1-Shader TBR example – Shader Interleaving
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1-Shader TBR example – Pipeline Bubbles Case #2

(Unbalanced latencies btw stages)
Vertex pipeline (i-th frame)

Fragment pipeline (i+1-th frame)
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• Task Scheduler for Dynamic Load Balancing
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Dynamic load balancing can be achieved with the TS, which is designed for 
creating, scheduling, and assigning tasks to the shader cores. The TS first 
accepts graphics commands from hosts, generates the tasks on a per unit 
(e.g., a drawcall or a tile) basis, and then schedules them to the idle cores. 

Task slots indicating the status of each core are defined and used to select a 
target core in the TS. The TS also takes into consideration the fact that 
different tasks (e.g., vertex, pixel) should be interleaved as much as 
possible for hiding latency. Above figure shows the operational flow of the 
scheduled tasks executing on four unified shaders. Scheduled tasks are 
processed in parallel in-between frames, which leads to dynamic load 
balancing, as shown in the figure. 
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