
Modern GPUs have employed unified shaders, which allow more flexible use
of the graphics rendering hardware. This trend has recently been realized in
mobile GPUs [1][2][3].

For the best GPU performance, the utilization of unified shader cores and
fixed-function hardware should be maximized while maintaining load balancing
among multiple cores.

In order to satisfy this requirement, we propose an effective task-scheduling
scheme, which has the following two key features: 1) a shader-interleaving
scheme that can hide latencies by exclusively executing different kernels, and
2) a task slot-based dynamic load-balancing scheme that evenly distributes
workloads to the multiple cores.

Our multi-core unified shader architecture,
which is an improvement over our previous
work, the SRP (Samsung Reconfigurable
Processor)-based GPU [4].

Multiple unified shaders can be easily
implemented as the SRP is reconfigurable.
Each core includes vertex and pixel processing
hardware in order to handle both types of data.
Specifically, these units are batch management
units (BMUs), primitive assembly (PA) units, tile
dispatch units (TDUs), fragment generators
(FGs), and raster operators (ROPs). The tile-
binning unit (TBU) is individually equipped for
parallel processing.

The task scheduler (TS) is a newly designed
unit responsible for dynamic load balancing and
shader interleaving

An Effective Task Scheduling Scheme for Multi-core Tile based Rendering GPU
Won-Jong Lee, Seok-Yoon Jung, Shi-Hwa Lee
Embedded Multimedia Group, System Architecture Lab.
SAIT, SAMSUNG ELECTRONICS Co., Ltd.

Motivation Latency Hiding and Load Balancing

Multi-core Unified Shader Architecture

Results

References

• Shader Interleaving Scheme for Latency Hiding

The GPU drives the fixed-function hardware and the shader cores to
execute in a fully pipelined manner. Unfortunately, this can cause pipeline
bubbles because of inconsistent latencies between the hardware and the
shader stage. If the kernel running on the shader core finishes before the
hardware stage, the shader core remains idle until the next stream arrives.

In order to hide these latencies, we propose a shader interleaving that allows
different kinds of kernels to run exclusively. When a certain kernel (e.g., the
vertex shader) becomes idle, the other kernel (e.g., the pixel shader) is
immediately assigned to the shader core and executed without any delays.
This can greatly improve overall throughput, which in turn leads to faster
execution.

• Implementation

The prototype GPU, including the proposed scheduler, was verified
and evaluated by cycle-accurate simulation, RTL simulation, and FPGA
targeting. The GPU was synthesized for a Xilinx Vertex6 FPGA board
running at 25Mhz.

Rightware’s 3DMark Mobile ES [5] and GLBenchmark [6] were used as
test benchmarks. Various benchmarks having different workload
characteristics (e.g., Taiji and Egypt: pixel-intensive, Hoverjet: vertex-
intensive) were selected for testing unified shader efficiency.

Above figure compares the performance of our GPU (4 unified shaders)
with that of a GPU with non-unified shaders (1 vertex and 3 pixel
shaders) [4] and having the same number of cores. Our GPU, which
adopts a scheduling scheme, is 1.2 to 2.8 times faster, thanks to the
effective combination of latency hiding and dynamic load balancing.

For better performance, we are currently developing a more accurate
scheduling algorithm that supports multi-threading. Finally, it is
expected that our GPU, including the proposed scheduler, will be a core
intellectual property for future application processors.

• Benchmarks

Cyber samurai Taiji Hover jet Egypt Pro

• Performance Evaluation

[1] Imagination, PowerVR SGX series, http://www.imgtec.com/powervr/sgx_series5.asp (2012)
[2] ARM, Mali T658, http://www.arm.com/products/multimedia/mali-graphics-hardware/mali-

t658.php (2012)
[3] Qualcomm, Adreno series, https://developer.qualcomm.com/discover/chipsets-and-

modems/adreno (2012)
[4] W.-J. Lee et al, “A Scalable GPU Architecture based on Dynamically Embedded

Reconfigurable Processor,” HPG 2011: ACM Conference on High-Performance Graphics,
(Poster), Vancouver, Canada (2011).

[5] RightWare, benchmarking software, http://www.rightware.com/en/Benchmarking+Software
(2011)

[6] GLBenchmark, http://www.glbenchmark.com (2011)

©2011 Samsung Electronics LTD., Samsung Advanced Institute of Technology, San 14, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-Do, 446-712 Korea, http://www.sait.samsung.co.kr joe.w.lee@samsung.com

Image courtesy NVIDIA

1-Shader TBR example - Ideal Case

BMU

VS/PS

PATB

TDU/FG

ROP

F1

F1(PS)

F1

V1

V1(VS)

V1

V2

F2

F2(PS)

F2

V2(VS)

V2

F3

F3(PS)

V3

F4

F4(PS)

F5

F5(PS)

V3

V3(VS)

F6

F6(PS)

F3 F4 F5 F6

As-IS

1-Shader TBR example – Pipeline Bubbles Case #1

(1 vertex stream per Drawcall, Serialized pipeline)
Vertex pipeline (i-th frame) Fragment pipeline (i-th frame)

BMU

VS/PS
PATB

TDU/FG

ROP

F1

F1(PS)

F1

V1

V1(VS)

V1

V2

F2

F2(PS)

F2

V2(VS)

V2

F3

F3(PS)

V3

F4

F4(PS)

F5

F5(PS)

V3

V3(VS)

F6

F6(PS)

F3 F4 F5 F6

glDraw glDraw glDraw

BubbleBubble

Vertex pipeline (i-th frame) Fragment pipeline (i-th frame)

Proposed

1-Shader TBR example – Shader Interleaving

BMU

VS/PS
PATB

TDU/FG

ROP

F1

F1 (PS)

F1

V1

V1(VS)

V1

V2

F2

F2 (PS)

F2

V2(VS)

V2

F3

F3 (PS)

V3

F4

F4 (PS)

F5

F5 (PS)

V3

V3(VS)

F6

F6 (PS)

F3 F4 F5 F6

BMU

VS/PS
PATB

TDU/FG

ROP

F1

F1(PS)

F1

F2(PS)

F2

F2

F3(PS)

F3

F3

Vertex pipeline (i-th frame) Fragment pipeline (i-th frame)

V1

V1(VS)

V1

V2

V2(VS)

V2 V3

V3

V3(VS) Bubble Bubble

As-IS

1-Shader TBR example – Pipeline Bubbles Case #2

(Unbalanced latencies btw stages)
Vertex pipeline (i-th frame)

Fragment pipeline (i+1-th frame)

Coarse-grained
multi-threading

• Task Scheduler for Dynamic Load Balancing

Task
Scheduler

Shader
Processor 0

PS

Shader
Processor 1

Shader
Processor 2

Shader
Processor 3

VS Task0

VS Task1

VS Task2

VS Task3

VS Task4

VS Task5

VS Task7

VS Task6

VS Task10

VS Task11

VS Task12

VS Task13

PS Task (Tile 0)

PS Task (Tile 1)

PS Task (Tile 2)

PS Task (Tile 3)

VS Task15

VS Task16

VS Task14

VS Task17

PS Task (Tile 6)

PS Task (Tile 5)

PS Task (Tile 7)

PS Task (Tile 4)

VS Task18

PS Task (Tile 131)

PS Task (Tile 132)

PS Task (Tile 129)

PS Task (Tile 130)

PS Task (Tile 135)

PS Task (Tile 133)

PS Task (Tile 134)

PS Task (Tile 136)

1st,2nd stage
(vs only period)

3rd stage
(vs & ps interleaving period) (ps only period)

Task Slots Task Slots Task Slots
0 0
1 0
1 0
1 0

1 1
1 1
0 1
1 1

1 1
1 1
1 1
1 0

0 1
0 0
0 1
0 1

Dynamic load balancing can be achieved with the TS, which is designed for
creating, scheduling, and assigning tasks to the shader cores. The TS first
accepts graphics commands from hosts, generates the tasks on a per unit
(e.g., a drawcall or a tile) basis, and then schedules them to the idle cores.

Task slots indicating the status of each core are defined and used to select a
target core in the TS. The TS also takes into consideration the fact that
different tasks (e.g., vertex, pixel) should be interleaved as much as
possible for hiding latency. Above figure shows the operational flow of the
scheduled tasks executing on four unified shaders. Scheduled tasks are
processed in parallel in-between frames, which leads to dynamic load
balancing, as shown in the figure.

Re
la

ti
ve

 P
er

fo
rm

an
ce

0

0.5

1

1.5

2

2.5

3

3.5

Samurai Taiji Hoverjet Egypt Pro

1 vertex & 3 pixel shaders
w/o scheduling

4 unified shaders
w/ scheduling

External Memory

AXI System BUS

Shader Processor
#1Fragment
Generator

TEX
Cach
e (L1)

Raster
Operator

BMU

Shader

Primitive
Assembly

Tile
Dispatch Unit

Task Scheduler

Shader Processor
#2Fragment
Generator

TEX
Cach
e (L1)

BMU

Shader

Primitive
Assembly

Shader Processor
#3Fragment
Generator

TEX
Cach
e (L1)

BMU

Shader

Primitive
Assembly

Shader Processor
#4Fragment
Generator

TEX
Cach
e (L1)

BMU

Shader

Primitive
Assembly

Tile
Binning

Unit

Texture Cache (L2)

Raster
Operator

Raster
Operator

Raster
Operator

Internal SRAM

Reconfigurable Processor Core

Central Register File

FU FU FU

Co
nf

ig
ur

at
io

n
M

em
or

y

Instruction Cache

VLIW Engine

Coarse-Grained Reconfigurable Array

Sequencer

FU FU FU

FU FU FU

FU

FU

FU

FU FU FUFU

Data Configuration Information

VLIW Engine

Coarse-Grained Reconfigurable Array

Reconfigurable Processor

Audio
Application

Video
Application

Fixed & Flexible

Graphics Application

API & Device Driver
shader compiler

Shader Core based on SRP

Multimedia processing on SRP

	Slide Number 1

