Software Pipelining Shader Core with Streaming Interface

Kwontaek Kwon^{1*} Kyoung June Min¹ Derek Lentz² Sang Oak Woo¹ Seok Yoon Jung¹ Shi Hwa Lee¹

¹Samsung Advanced Institute of Technology ²Samsung Information Systems America

*kwontaek.kwon@samsung.com

Motivation

Key factors to GPU computing performance

SAMSUNG

- Parallel operation of multiple computation units
- <u>Parallel I/O bandwidth into/out of computation units</u>

Large high-speed internal memory can be used to provide sufficient I/O bandwidth to computation units. But it incurs significant hardware cost.

Shader Core Architecture based on SRAM internal memory

SRAM Internal memories in the shader core is simultaneously used for:

- Receiving pixel shader input data from external sources (e.g. Fragment Generator units)
- Providing shader input data to SRP FUs
- Storing shader output data batches
- Providing shader output data to external consumers (e.g. ROP units)

The SRAM-based architecture requires large, high-speed, multiport, memories which are rather expensive in hardware and are often not able to provide sufficient I/O bandwidth to all FUs.

Software Pipelineing Shader Core

The Samsung Reconfigurable Processor(SRP)[1] can accelerate loop execution by software pipelining which overlaps computations from multiple iterations to make a compact schedule. However software pipelining would schedule multiple LD requests for an iteration with different timing and order.

SRP GPU Architecture based on Streaming Interface

Streaming interface provides dedicated I/O channel between FU and external data source/destination:

- Each FU can do LD/ST with external source/destination simultaneously and continuously.
- Data routing and queuing are performed on-the-fly by the stream input/output muxes.
- Stream data LD/ST operations are automatically synchronized with software pipelining schedule.

Evaluation and Conclusions

The SRP GPU architecture based on the streaming interface has following advantages:

- Eliminates FU I/O bandwidth limit imposed by SPM; each FU can have dedicated I/O channel.
- Required Internal memory size is much lower; Shader input/output batch buffer is not required since I/O is done in streaming manner.
- LD/ST operations with different timing and order are dealt by on-the-fly data routing and queuing.

We evaluated benefits of streaming interface-based architecture by measuring rendering time of Rightware's Samurai benchmark on FPGA verification environment.

The result shows upto 45% rendering performance gain and we can see that the performance bottleneck in SRP FU I/O is successfully removed.

References

 LEE W. J., WOO S. O., KWON K., SON S. J., MIN K. J., JANG G. J., LEE C. H., JUNG S. Y., PARK C. M., LEE S. H.: A scalable gpu architecture based on dynamically reconfigurable embedded processor. In *Poster. HPG* '11 (2011).