
Adaptive Scalable

Texture Compression

J. Nystad1, A. Lassen1, A. Pomianowski2, S. Ellis1, T. Olson1

1ARM 2AMD

High Performance Graphics 2012

2

Motivation

Textures are fundamental in modern graphics

But textures are big…

 Major contributors to memory bandwidth and power consumption

 Solution: Texture Compression [e.g. Knittel et al 96, Beers et al 96]

3

Texture Use Cases

Textures are used for many different things:

…and each use case has different requirements

 Number of color components

 Dynamic range (LDR vs HDR)

 Dimensionality (2D vs 3D)

 Quality

Reflectance
Normals Height

Lighting environment

Density (3D)

Illuminance

Depth

4

The Problem

No existing format addresses all use cases

4

3

1

2

2 3 4 5 6 7 8

C
o

lo
r

C
o

m
p

o
n

e
n

ts

bits per pixel
1

PVRTC

PVRTC

S3TC

PVRTC

S3TC

PVRTC

ETC

RGTC

RGTC

BC7

BC6H

S3TC

BC7

5

Our Solution

Adaptive Scalable Texture Compression

Design Goals

 Cover the widest possible range of use cases

 High quality

Functionality

 Adaptive: # color components, dynamic range specified per-block

 Scalable: from 8bpp down to <1bpp in fine steps

 Orthogonal: 1 to 4 color components at any bit rate

 General: both 2D and 3D, both LDR and HDR

 Area-efficient, hardware-friendly

6

Related Work: The Standard Paradigm

Block-based, fixed-rate

 BTC [Delp & Mitchell 79]

 S3TC / DXTn [Iourcha et al 99]

 BPTC / BC6H+BC7 [Microsoft]

 ETC1 / ETC2 [Ström et al 05,07]

 …many others, including ASTC

Block Contents

 Color space(s)

 Per-texel color selectors

 Control information

Key Advantage

 Can decode any texel in constant time with one memory access

7

Other Approaches

Vector Quantization [Beers et al 96]

 Better quality

 Not hardware-friendly due to need for codebooks

Variable-rate coding [Inada and McCool 06]

 Better quality

 Requires multiple memory references, special cache architecture

PVRTC [Fenney 03]

 Reduced block artifacts

 Requires multiple memory references

8

Representing bounded integer values

Problem: Given sequences of equiprobable values in the

range [0..N-1], find an efficient encoding that…

 Provides random access with compact decode hardware

 Works for many values of N

Standard solution: packed binary

 Efficient (optimal) for N = 2k

New solution: bounded integer sequence encoding (BISE)

 Optimal for N = 2k

 Near optimal for N = 3×2k, 5×2k

9

Storage Efficiency

Equiprobable values in range [0..N-1] stored in B bits/value

 Each value contains log2(N) bits of information

 Storage efficiency is log2(N)/B

Binary encoding provides widely spaced operating points

75%

80%

85%

90%

95%

100%

2 5 8

1
1

1
4

1
7

2
0

2
3

2
6

2
9

3
2

3
5

3
8

4
1

4
4

4
7

5
0

5
3

5
6

5
9

6
2

6
5

6
8

7
1

7
4

7
7

8
0

8
3

8
6

8
9

9
2

9
5

9
8

1
0

1

1
0

4

1
0

7

1
1

0

1
1

3

1
1

6

1
1

9

1
2

2

1
2

5

1
2

8

Storage Efficiency

Binary Encoding

10

Storage Efficiency

Equiprobable values in range [0..N-1] stored in B bits/value

 Each value contains log2(N) bits of information

 Storage efficiency is log2(N)/B

BISE adds two optimal value ranges between each pair of

powers of two

75%

80%

85%

90%

95%

100%

2 5 8

1
1

1
4

1
7

2
0

2
3

2
6

2
9

3
2

3
5

3
8

4
1

4
4

4
7

5
0

5
3

5
6

5
9

6
2

6
5

6
8

7
1

7
4

7
7

8
0

8
3

8
6

8
9

9
2

9
5

9
8

1
0

1

1
0

4

1
0

7

1
1

0

1
1

3

1
1

6

1
1

9

1
2

2

1
2

5

1
2

8

Storage Efficiency

Binary Encoding

BISE Encoding

11

ASTC Bit Rates

Standard block-based paradigm

 Generalized to 3D

 Unusually large number of block sizes

2D Bit Rates 3D Bit Rates

4x4 8.00 bpp 10x5 2.56 bpp 3x3x3 4.74 bpp 5x5x4 1.28 bpp

5x4 6.40 bpp 10x6 2.13 bpp 4x3x3 3.56 bpp 5x5x5 1.02 bpp

5x5 5.12 bpp 8x8 2.00 bpp 4x4x3 2.67 bpp 6x5x5 0.85 bpp

6x5 4.27 bpp 10x8 1.60 bpp 4x4x4 2.00 bpp 6x6x5 0.71 bpp

6x6 3.56 bpp 10x10 1.28 bpp 5x4x4 1.60 bpp 6x6x6 0.59 bpp

8x5 3.20 bpp 12x10 1.07 bpp

8x6 2.67 bpp 12x12 0.89 bpp

12

Color spaces and color selectors

Color spaces defined by pairs of color endpoints

 cf S3TC, PVRTC, BPTC

 Endpoints can be LDR or HDR, 1 to 4 color components

Per-texel weights interpolate between the endpoints

 Number of values a weight can have is variable

 Interpolation is linear for LDR, pseudo-logarithmic for HDR

G

R

0

¼
½

¾

1
0 0 ¼ ¾

0 0 ¼ 1

¼ ¼ ½ 1

¾ 1 1 1

Texel Weights

stored with block

Color
Weights

Endpoint

Endpoint

Interpolated
colors

13

Partitions and Multiple Color Spaces

Each block has an optional partition function (cf BPTC)

 Function maps each texel in the block to a partition

 Each partition has its own color space

G

R

0 ¼ ½ ¾ 1

0 0 ¼ ½

0 0 ¼ ¾

¼ ¼ ½ 1

¾ 1 1 1

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1 0

¼

½

¾

1

Partition 0

P
 a
 r t
 i t i

 o
 n
 1

Texel Weights Partition Function

stored with block Maps texels to partitions

14

Partition Functions

Need lots of partition functions

 Too many to store as tables

Procedural partition functions

 Selected by 10-bit per-block

index plus # of partitions

 Derived from HW random

number generator

Advantage

 3072 functions

Disadvantage

 Functions are suboptimal

Partition patterns for 8x8 block size

(false colored to show partition ID)

15

Computing Per-Texel Weights

Scaling Infill

 Color weights for a block are specified as MxN arrays

 Weights obtained by bilinear (2D) or simplex (3D) interpolation

16

Block Encoding

Index Mode

 Color weight array dimensions

 Range of values used for

weights

Partition Information

 Partition count

 Partition function ID

Color Space Mode(s)

 Number of channels

 Dynamic range

 Color endpoint encoding

Color Endpoint Data

Color Weights

17

Implementation

Implemented in synthesizable RTL

 About 2x the size of our BPTC implementation

Experimental codec

 Branch-and-bound search

 Choice of heuristics to control speed/quality tradeoff

30
32
34
36
38
40
42
44

0.1 1 10 100 1000

ASTC Codec Speed / Quality Tradeoff

Very fast

Fast

Medium

Thorough

Exhaustive

Compression time in seconds

d
B

 P
S

N
R

18

Quality Comparison – RGB LDR 2bpp

“Kodak” test set

 24 natural RGB images

 PSNR comparison

ASTC vs PVRTC 2bpp:

24

26

28

30

32

34

36

38

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ASTC 8x8

PVRTC 2bpp

Image

d
B

 P
S

N
R

19

30

32

34

36

38

40

42

44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ASTC 6x6

S3TC

Quality Comparison – RGB LDR 4bpp

“Kodak” test set

 24 natural RGB images

 PSNR comparison

ASTC at 3.56 bpp vs S3TC at 4bpp:

Image

d
B

 P
S

N
R

20

40

41

42

43

44

45

46

47

48

49

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ASTC 4x4

BC7

Quality Comparison – RGB LDR 8bpp

“Kodak” test set

 24 natural PSNR images

 PSNR comparison

ASTC vs BC7 at 8bpp:

Image

d
B

 P
S

N
R

21

Image Comparisons – RGB LDR 2bpp

original

original

22

Image Comparisons – RGB LDR 2bpp

ASTC

8x8

PVRTC

2bpp

23

Image Comparisons – RGB LDR 4bpp

original

original

24

Image Comparisons – RGB LDR 4bpp

ASTC

6x6

S3TC

(4bpp)

25

OpenEXR example images

 mPSNR comparison

 Using exposure ranges from Munkberg et al 2006

ASTC 8 bpp vs BC6H 8bpp:

Quality Comparison – RGB HDR

35

40

45

50

55

d
B

 m
P

S
N

R

ASTC 8bpp

BC6H

26

Contributions

Novel techniques

 Bounded Integer Sequence Encoding

 Scaling Infill

 Procedural Partition Functions

A new texture compression format: ASTC

 Unprecedented flexibility

 Wide range of bit rates

 Orthogonal choice of number of color components

 LDR and HDR, 2D and 3D

 Very high quality

 As good or better than formats in commercial use

27

Future Work

Encoder Improvements

 HDR

 Block artifact reduction

Quality evaluation / improvement on other use cases

 Normals

 3D texture applications

Codec speed improvements

 Embeddable encoder

28

Acknowledgements

Valuable discussions and feedback:

 Konstantine Iourcha, Cass Everitt, Nick Penwarden, Jacob

Ström, Walt Sullivan, and many others

 The HPG reviewers

Image Credits
 http://en.wikipedia.org/wiki/File:CTSkullImage.png

 http://en.wikipedia.org/wiki/File:Cubic_Structure_and_Floor_Depth_Map_with_Front_and_Bac

k_Delimitation.jpg

 http://en.wikipedia.org/wiki/File:Heightmap.png

 http://r0k.us/graphics/kodak/

http://en.wikipedia.org/wiki/File:CTSkullImage.png
http://en.wikipedia.org/wiki/File:Cubic_Structure_and_Floor_Depth_Map_with_Front_and_Back_Delimitation.jpg
http://en.wikipedia.org/wiki/File:Cubic_Structure_and_Floor_Depth_Map_with_Front_and_Back_Delimitation.jpg
http://en.wikipedia.org/wiki/File:Heightmap.png
http://r0k.us/graphics/kodak/

