
Random Permutation on a GPU – Is Your Algorithm Unbiased for n ≠ 2m ?

Parallel random permutation generation can, e.g., be used

• to perturb the input of a subsequent algorithm in order to

make worst-case behavior unlikely, or

• to perform computations only on a small sampled subset

of the whole problem space in order to draw conclusions

about the whole problem space, e.g.,

• in statistical science and modeling, or

• in bioinformatical phylogenetic reconstruction

References

Michael Waechter, Kay Hamacher, Franziska Hoffgaard, Sven Widmer, Michael Goesele

Motivation

Experimental Results

Conclusions

Bias
A permutation algorithm’s bias can be described using stochastic 

permutation matrices:

Bias Reduction
For all biased permutation algorithms with positive

permutation matrices an iterative application of the algorithm

reduces the bias. In our paper [3], we prove that the bias

converges exponentially against 0 as illustrated in Figure 1 for

k = 1 to 6 iterations.

The bias can further be reduced for butterfly networks by cyclic

shifting of the array content between the algorithm iterations.

However, the shifting offsets need to be selected carefully,

since otherwise shifting might increase the bias.

An implementation of the butterfly network on an NVIDIA

GeForce GTX 480 compared to a Rand_Sort based on the

CUDPP Radix Sort implementation:

• Permutation networks are typically well-suited for a GPU

implementation.

• Bias is an issue for many permutation algorithms.

• Bias can be reduced at an exponential rate by repeatedly

applying the permutation algorithm.

• Cyclic shifting with correct offset yields a further

improvement for the butterfly network.

• Bias may be tolerable in a practical application (e.g.,

phylogenetic reconstruction) and can be traded off against

computation speed (i.e., the number of iterations).

pij is the probability of element i of the initial array being

permuted into position j of the final array. For the butterfly

network and n = 5 this becomes

Up to three bias reduction iterations the speed is competitive

width the optimized CUDPP code. Rand_Sort stores, however,

additional keys and does therefore not work in-place.



















nnn

n

n

pp

pp

M

,1,

,11,1































2/18/18/18/18/1

04/14/14/14/1

04/14/14/14/1

04/14/14/14/1

2/18/18/18/18/1

5M

which is clearly non-uniform. We define a bias measure as

 



ji

n

ji

n

n njiM
nn

njiM

n
MB

,,
2

/1),(
1

/1

/1),(1
)(

We note that the bias observed in the butterfly network is not a

pathological example. The need for n to be a power of two results

naturally from the divide and conquer paradigm and the

abstraction to arbitrary n is far from trivial. In fact, we also

obtained a similar bias for the permutation algorithm described

by Waksman [2].

[1] Cong, G., Bader, D.A.: An empirical analysis of parallel random

permutation algorithms on SMPs. ISCA PDCS 2005

[2] Waksman, A.: A permutation network. J. ACM 15, 1968

[3] Waechter, M. et al.: Is Your Permutation Algorithm Unbiased for n

≠ 2m ?. To be presented at PPAM 2011.

www.gris.tu-darmstadt.de/research/captreal/projects

Figure 2.

Especially bioinformatical problems tend to be computationally

expensive, which justifies the need for massive parallelization

using GPU-based processing.

Requirements for GPU-based permutation algorithms are:

• scalability to a number of processing elements close to the

problem size

• in-placeness

• few thread synchronizations, little contention resolving

• little communication among threads

Most existing random permutation algorithms belong to one of

five categories (see Cong and Bader [1]):

• Rand_Sort, Rand_Dart, Rand_Shuffle, Rand_Dist

• Permutation Networks

Permutation networks meet the requirements for our GPU

setting best, e.g., a butterfly network with a time complexity of

O(n log n) as shown beneath:

Such networks are typically defined for sizes of n = 2m .For non-

powers of two (e.g., n = 5) the trivial generalization would be to

simply leave out exchanges that involve non-existing array

elements. But this generalization does not generate all possible

permutations with equal likelihood yielding a bias.

The green curve in

Figure 1 (k = 1)

shows the bias

B(Mn) of the

butterfly network

for various input

data sizes n. k

gives the number

of iterations of the

permutation ap-

plied to the input

array (see Bias

Reduction).
Figure 1.


