
Random Permutation on a GPU – Is Your Algorithm Unbiased for n ≠ 2m ?

Michael Waechter, Kay Hamacher, Franziska Hoffgaard, Sven Widmer, Michael Goesele

 TU Darmstadt

Darmstadt, Germany

1. Introduction

Parallel random permutation algorithms are an essential building
block and can, e.g., be used in statistical science and modeling or
in bioinformatical phylogenetic reconstruction. Many of these
algorithms can be classified into one of five categories: Rand_Sort,
Rand_Dart, Rand_Shuffle, Rand_Dist and permutation networks
[Cong and Bader 2005]. Permutation networks meet all require-
ments for efficient implementation on a GPU (e.g., scalability
with number of processors, working in-place, and small amount of
synchronizations). Many of these algorithms operate on input
sizes that are a power of two and it is often assumed that these
algorithms can be easily generalized to arbitrary n. We show that
this simplifying assumption is not necessarily correct since it may
result in a biased algorithm (i.e., not all possible permutations are
generated with equal likelihood). We also present an iterative
approach to correct this bias, which can be applied to almost all
permutation algorithms.

2. Bias

The bias of a permutation algorithm can be described using sto-
chastic permutation matrices. For some permutation algorithms
the resulting distribution may be non-uniform if applied to arbi-
trary n. We define a bias measure for a permutation matrix Mn:

The bias B(Mn) for a butterfly network using one iteration (k=1,
green curve) is shown in Figure 1 for various input data sizes n. k
gives the number of iterations of the permutation applied to the
input array (see Section 2.1). We obtained a similar bias for the
permutation algorithm described by Waksman [1968].

Figure 1. Bias B(Mn) for varying array size and iterations

2.1 Bias Reduction

An iterative application with positive permutation matrices can
reduce the bias for all permutation algorithms. In Waechter et. al
[2011], we prove that the bias converges exponentially against 0
as illustrated in Figure 1 for k = 1 to 6 iterations. Furthermore the
bias can be reduced for butterfly networks by cyclic shifting of the

array content between the algorithm iterations. However, the
shifting offsets need to be selected carefully, since otherwise
shifting might increase the bias.

3. Results

We compare an implementation of the butterfly network on an
NVIDIA GeForce GTX 480 with varying numbers of bias reduc-
tion iterations and different array sizes against a Rand_Sort im-
plementation using Radix Sort from the CUDPP library.

Figure 2. Speed of randomly permuting arrays of various sizes.

As shown in Figure 2, the runtime of the permutation network
with up to three bias reduction iterations is competitive with the
optimized CUDPP code. Rand_Sort stores, however, an additional
key per element and is therefore not in-place.

4. Conclusions

Permutation networks are well suited for a GPU implementation.
The bias introduced by shuffling a non power of two number of
array elements is, however, an issue for many permutation net-
works. It can be reduced at an exponential rate by applying the
permutation algorithm repeatedly. For butterfly networks, cyclic
shifting with a correct offset yields a further improvement. In a
practical scenario, the bias may be tolerable and can be traded off
against computational speed by varying the number of iterations.

References

CONG, G., BADER, D.A. 2005. An empirical analysis of parallel

random permutation algorithms on SMPs. In Proc. 18th ISCA
International Conference on Parallel and Distributed Compu-
ting Systems (PDCS 2005).

WAKSMAN, A. 1968. A permutation network. Journal of the ACM

15(1).

WAECHTER, M., HAMACHER, K., HOFFGAARD, F., WIDMER, S.,

GOESELE, M. 2011. Is Your Permutation Algorithm Unbiased
for n ≠ 2m ?. In Proc. 9th International Conference on Parallel
Processing and Applied Mathematics (PPAM 2011), to appear.
www.gris.tu-darmstadt.de/research/captreal/projects

 



ji

n

ji

n

n njiM
nn

njiM

n
MB

,,
2

/1),(
1

/1

/1),(1
)(

