
Cluster-Wide Multi-GPU Computing

Jeff A. Stuart∗

UC Davis
John D. Owens†

UC Davis

1 Introduction

GPUs are no longer a niche for high-performance computing
(HPC), they are at the forefront and at the time of this writing,
a GPU cluster now holds the record as the world’s fastest super-
computer. In order to effectively program such a large machine,
the community must have software support in the form of applica-
tion middleware, and extended hardware support from vendors. We
classify the three types of support as 1) mechanisms, 2) application-
programming interfaces (APIs), and 3) programming models.

As GPU architectures are very guarded in comparison to CPU ar-
chitectures, it is near impossible for academics to meaningfully
modify hardware. Thus, we must focus on the software aspect and
hope use our lessons learned to help steer GPU and chipset archi-
tects in their future design decisions. We present our results from
implementing various types of middleware below.

2 Mechanisms

Perhaps the most lacking mechanism in the GPU is the ability for
the GPU to send messages/signals to the CPU and its PCI-e sib-
lings, including in many cases other GPUs. We developed a mech-
anism we refer to as callbacks [Stuart et al. 2010b]. Callbacks pro-
vide the GPU programmer with many new functions. The GPU can
make system calls, initiate DMA transfers, and execute arbitrary
system code. Callbacks also grant the GPU pseudo autonomy from
the CPU. We say pseudo autonomy because we must use software
tricks to achieve callbacks at this stage, due to lacking the proper
support in hardware.

2.1 APIs

On top of callbacks, we built an API called “Distributed Comput-
ing for GPU Networks” (DCGN, pronounced Decagon) to allow
GPUs and CPUs to pass messages amongst each other [Stuart and
Owens 2009]. DCGN is very similar in appearance to MPI. DCGN
provides support for the basic collectives (broadcast, scatter, gather,
all-to-all) as well as both synchronous and asynchronous point-to-
point communications.

Mapping of GPU control primitives (threads, blocks, SMs) to a typ-
ical MPI rank is non intuitive, thus we introduced “slots”. Slots in-
telligently multiplex ranks from MPI to a GPU. The user creates a
mapping at application-startup time, and chooses an arbitrary num-
ber of slots per GPU. We give this control because even in our lim-
ited tests, there was no single-best mapping of ranks to GPU control
primitives.

2.2 Models

MapReduce [Dean and Ghemawat 2004] is a programming model
from functional programming that works with data-parallel tasks.
All previous MapReduce implementations on the GPU were limited
to an in-core problem on a single GPU.

∗e-mail: stuart@cs.ucdavis.edu
†e-mail:jowens@ece.ucdavis.edu

We created a new cluster-wide, multi-GPU MapReduce library
called (GPMR) to take advantage of the new clusters GPU clusters
available today [Stuart and Owens 2011]. We do not implement the
entire MapReduce execution environment as some aspects (HDFS,
Fault tolerance) are orthogonal to running MapReduce on a cluster
of GPUs. We focused on extending and modifying the MapRe-
duce model to minize communication. GPMR uses a method for
grouping segments of input data into “chunks”. We added several
substages to the Map phase including previously existing substages
(Partial Reduce, Combine) and added our own substage (Accumu-
lation). All the substages reduce communication, either over the
PCI-e bus or the network interconnect, or both.

2.3 Applications

To test our mechanisms, APIs, and models, we implemented several
applications. For DCGN, we implemented several toy applications
and benchmarks. We discuss all of these in detail in the paper.

We implemented a high-quality volume renderer using GPMR [Stu-
art et al. 2010a]. Volume rendering transfers well to MapReduce.
We subdivide the domain into many small tiles. The map stage casts
partial rays through each tile. The reduce stage first sorts each set
of rays and performs alpha blending, then stitches the final image.

Another application we built is a generic resource-manager for het-
erogeneous (CPU and GPU) clusters [Budge et al. 2009]. The ap-
plications runs user-supplied kernels on both the CPU and GPU,
handles data movement, intelligently schedules work based on data
locality, and tries to use hints from the programmer to intelligently
schedule compute resources.

References

BUDGE, B., BERNARDIN, T., STUART, J. A., SENGUPTA, S.,
JOY, K. I., AND OWENS, J. D. 2009. Out-of-core data manage-
ment for path tracing on hybrid resources. Computer Graphics
Forum 28, 2 (Apr.), 385–396.

DEAN, J., AND GHEMAWAT, S. 2004. MapReduce: Simplified
data processing on large clusters. In Proceedings of the 6th Sym-
posium on Operating Systems Design & Implementation.

STUART, J. A., AND OWENS, J. D. 2009. Message passing on
data-parallel architectures. In Proceedings of the 23rd IEEE In-
ternational Parallel and Distributed Processing Symposium.

STUART, J. A., AND OWENS, J. D. 2011. Multi-GPU MapReduce
on GPU clusters. In Proceedings of the 25th IEEE International
Parallel and Distributed Processing Symposium.

STUART, J. A., CHEN, C.-K., MA, K.-L., AND OWENS, J. D.
2010. Multi-GPU volume rendering using MapReduce. In
HPDC ’10: Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing / MAPRE-
DUCE ’10: The First International Workshop on MapReduce
and its Applications, 841–848.

STUART, J. A., COX, M., AND OWENS, J. D. 2010. GPU-to-CPU
callbacks. In UCHPC 2010: (Euro-Par 2010 Workshops).


