
The Direct-Trace Library: Ray-Tracing for the Masses

Benjamin Mora
Swansea University

Swansea SA2 8PP, UK
b .mora@swan.ac.uk

Abstract
We present the Direct-Trace API, a fast C/C++ ray-tracing
library that does not employ spatial subdivision data structures
for computing intersections. The library provides most of the
tools needed in a rendering pipeline and keeps productivity high.
This talk introduces the API and its features to the community.
Introduction
The Direct-Trace API is a Ray-Tracing library, and provides
some specific atypical features, with an OpenGL-like interface
for describing the scene. The Ray-Tracing engine runs the first
efficient algorithm not to use spatial subdivision data structures.
This allows tracing of rays as soon as the scene primitives are
stored in appropriate lists, without needing any precomputations
prior to tracing. On a single 3GHz core, the engine traces
between 1 and 10 millions rays per second [Mora], depending
on both the coherency of rays and scene size, which can contain
several million primitives. Typical use of the library can include
rendering either dynamic scenes or very large scenes where the
scene content is streamed from an out-of-core source.
Unlike other Ray-Tracing platforms providing a high-level
language and hiding most internals from the programmer, the
new Direct-Trace library has been designed as a closer-to-
hardware-but-programming-friendly layer. Principally, the
library manages memory objects like buffers of rays, images and
scene elements such as its geometry, and computes intersections.
Other elements of the rendering pipeline such as shading or ray-
generation can be treated with or without support from the
library. For efficiency reasons (large batches of workload must
be specified), the size of both ray and image buffers can/must be
controlled by the programmer. Shaders can be loaded as C
functions and/or OpenCL routines, but a higher-level language,
sitting on top of the current software layer provided by our API,
could be implemented by a third party.

OpenGL-like Scene Description Interface
The OpenGL interface is a standard well-known by
programmers. By providing a similar interface, OpenGL
programmers should be able to port their code easily. Porting
will however require modifications in the source code, as some
aspects of the OpenGL interface –a state machine– can incur a
loss of productivity, and have therefore required some profound
modifications as the library is designed to keep productivity
high. For instance, resource allocation for rays, images and
scenes is as simple as declaring C++ objects of those types. With
scenes, programmers can explicitly define a given size for a
scene (i.e., number of primitives), or choose to let the library
automatically resize the arrays when adding elements to the
scene, which will result in extra random allocations made.
Our major issue however, was to move from a rasterization
concept, where only part of the scene needs to be known at a
given time t, to a Ray-Tracing library where most information is

needed throughout the pipeline (e.g., geometry). Indeed the
OpenGL machine can process primitives of one given material
sequentially, and then process primitives of another material
type of anisotropic properties. As such, the OpenGL language
would require extensions .
To solve this dilemma, the library mainly requires creation of
materials with fixed-size properties enforced for any primitives
of a given type. Streaming the scene geometry then requires
fixed material in a Begin/End section. The following code
specifies a triangle with normals as per-primitive attributes and
computes intersections of a set of rays with the scene (shading
left apart):

#include "DirectTraceAPI.h"

DirectTraceAPI dtAPI;
DTScene scene(dtAPI);

DTRayBuffer rays(dtAPI);

int byteMat=0, bytePrim=9*4, byteVertex=0;

int materialId= scene.NewMaterial(bytesMat,
 bytesPrim, bytesVertex);

float vertices[3][3]={...};

float normals[3][3]={...};

scene.Begin(DT_TRIANGLES,materialId);

scene.PrimitiveAttrib(normals,9*4);

scene.Vertex3fv(vertices[0]);

scene.Vertex3fv(vertices[1]);

scene.Vertex3fv(vertices[2]);

scene.End();

rays.Resize(640,480);

rays.GenerateRaysFromGLProjectionMatrix();

scene.Intersector(rays);

Other Features and Current State
The library also provides multiple tools, including Ray and
Image shaders, Multi-threading support, and OpenCL/OpenGL
interoperability. Shaders specified with a C function pointer
benefit from accessing the computer's main memory and
implement all kinds of functionalities, while OpenCL shaders
benefit from hardware acceleration, but may require more effort
from the programmer.
While the features previously described are implemented and
stable, the library is still under development. The library will be
released by Siggraph 2011, with texture support, multithreading
and 1.0 specifications finalized at that time.
References
MORA, B. Naive Ray Tracing: A Divide-And-Conquer

Approach. Accepted for publication, ACM transactions On
Graphics.

This work was supported by EPSRC (www.directtrace.org).

C/C++ User Program
API Calls

Begin, End, Vertex3fv,
PrimitiveAttrib, Intersector

 Algorithmic Engine (CPU/GPU)

Image
Buffers

Ray
Buffers

Scene
Buffers

OpenCL
Library

Figure 1: Overview of the current Direct-Trace Graphics library. The API stores Rays, Images, and Scenes as
buffers and allows easy access to them through the interface. OpenCL acceleration is also available.

Final Image
in OpenGL context

GPU

