TheDirect-TraceLibrary: Ray-Tracing for the M asses

Benjamin Mora
Swansea University
Swansea SA2 8PP, UK
b .mora@swan.ac.uk

C/C++ User Program

——— . OpenCL
|Algir|thm|c E:rl1:g|ne (CPU/l(;;PU)|~ Lipt;arr;ry h-

API Calls
Begin, End, Vertex3fv, -
PrimitiveAttrib, Intersector Scene
Buffers

Buffers

Image

Final Image
Buffers

in OpenGL context

=

Figure 1: Overview of the current Direct-Trace Graphicgdity. The API stores Rays, Images, and Scenes as
buffers and allows easy access to them througmtedgace. OpenCL acceleration is also available.

Abstract

We present the Direct-Trace API, a fast C/C++ ragihg
library that does not employ spatial subdivisiotiadstructures
for computing intersections. The library providessnof the
tools needed in a rendering pipeline and keepsygtodty high.
This talk introduces the API and its features ®¢bmmunity.
Introduction

The Direct-Trace API is a Ray-Tracing library, aptbvides
some specific atypical features, with an OpenGEk-likterface
for describing the scene. The Ray-Tracing engimes tthe first
efficient algorithm not to use spatial subdivisiteata structures.
This allows tracing of rays as soon as the scemeitpyes are
stored in appropriate lists, without needing angcpmputations
prior to tracing. On a single 3GHz core, the engtraces
between 1 and 10 millions rays per second [Morehetding
on both the coherency of rays and scene size, wiginhcontain
several million primitives. Typical use of the l#y can include
rendering either dynamic scenes or very large scerere the
scene content is streamed from an out-of-core sourc

Unlike other Ray-Tracing platforms providing a higivel
language and hiding most internals from the prognem the
new Direct-Trace library has been designed as aeclho-
hardware-but-programming-friendly layer. Principall the
library manages memory objects like buffers of raymges and
scene elements such as its geometry, and compagesections.
Other elements of the rendering pipeline such adish or ray-
generation can be treated with or without suppooinfthe
library. For efficiency reasons (large batches ofkkoad must
be specified), the size of both ray and image bsiffan/must be
controlled by the programmer. Shaders can be loated
functions and/or OpenCL routines, but a higher{léaeguage,
sitting on top of the current software layer praddoy our API,
could be implemented by a third party.

OpenGL-like Scene Description Interface

The OpenGL interface is a standard well-known by

programmers. By providing a similar interface, O@én
programmers should be able to port their code yeaBibrting
will however require modifications in the sourcedepas some
aspects of the OpenGL interface —a state machiae-ncur a
loss of productivity, and have therefore requirethe profound
modifications as the library is designed to keepdpctivity
high. For instance, resource allocation for raysades and
scenes is as simple as declaring C++ objects skthypes. With
scenes, programmers can explicitly define a giviee for a
scene (i.e., number of primitives), or choose tothe library
automatically resize the arrays when adding elesn¢éatthe
scene, which will result in extra random allocationade.

Our major issue however, was to move from a rastBan
concept, where only part of the scene needs tonbevik at a
given timet, to a Ray-Tracing library where most informatisn i

needed throughout the pipeline (e.g., geometrydledd the
OpenGL machine can process primitives of one givexterial
sequentially, and then process primitives of anotmaterial
type of anisotropic properties. As such, the Oper&iguage
would require extensions .

To solve this dilemma, the library mainly requirggation of
materials with fixed-size properties enforced fay g@rimitives
of a given type. Streaming the scene geometry tieguires
fixed material in a Begin/End section. The follogircode
specifies a triangle with normals as per-primitateributes and
computes intersections of a set of rays with ttenegshading
left apart):

#include "Di rect TraceAPI . h"

Di rect TraceAPl dt APl ;

DTScene scene(dt API);

DTRayBuf fer rays(dtAPI);

int bytemat=0, bytePrinr9*4, byteVertex=0;

int materialld= scene. NewMat eri al (byt esiMat,
bytesPrim bytesVertex);

float vertices[3][3]={...};

float normal s[3][3]={...};

scene. Begi n(DT_TRI ANGLES, nateri al 1d);

scene. PrimitiveAttrib(normals, 9%4);

scene. Vertex3fv(vertices[0]);

scene. Vertex3fv(vertices[1]);

scene. Vertex3fv(vertices[2]);

scene. End() ;

rays. Resi ze(640, 480) ;

rays. Gener at eRaysFr onfaLPr oj ecti onMat ri x();

scene. | ntersector(rays);

Other Featuresand Current State

The library also provides multiple tools, includirgay and

Image shaders, Multi-threading support, and Ope®PehGL

interoperability. Shaders specified with a C fuoetipointer

benefit from accessing the computer's main memand a

implement all kinds of functionalities, while OpehGhaders

benefit from hardware acceleration, but may reqoicee effort

from the programmer.

While the features previously described are implees and

stable, the library is still under development. Tibeary will be

released by Siggraph 2011, with texture supporttitinteading

and 1.0 specifications finalized at that time.

References

Mora, B. Naive Ray Tracing: A Divide-And-Conquer
Approach. Accepted for publication, ACM transacto®n
Graphics.

This work was supported by EPSRC (www.directtratcg.o

