A Divide-and-Conquer Algorithm for Simultaneous Photon Map Queries

Marc Drosket
NVIDIA

Alexander Keller*
NVIDIA

Daniel Seibert?
NVIDIA

Leonhard GriinschloB*
NVIDIA / Weta Digital

Figure 1: Instead of single photon map queries, a batch of range queries (blue disks centered at black dots) for photons (red dots) is
executed simultaneously, which increases efficiency, because similar queries can share search results. In addition, partitioning the set of
query locations on the left by a split plane allows for early discarding of photons (gray dots) outside the resulting search ranges (dashed
boxes on the right). The yellow dots (on the right) are photons that need to be considered in both search ranges.

1 Progressive Photon Mapping

Following the paths of photons emitted from lights is the most nat-
ural way to simulate light transport. Storing the flux ¢, with the
direction w, and location of incidence whenever a photon hits a
surface allows one to determine the radiance

l Zpel’j’(z,r(n)) fS (wa x, wP)¢P
- r2(n)

in a point x seen from direction w: The flux of all photons p in a ball

B of radius r(n) := roV n~2 is colored by the physical transport
properties f, of the surface and averaged across a disk of the same
radius, where 7 is the total number of photon paths.

As defined above, the squared radius 7% (n) decreases slower than
the increase in the number of paths, which yields consistent algo-
rithms and even allows for deterministic progressive photon map-
ping [Keller et al. 2010, and references therein].

Simulating the process of taking a photograph consists of comput-
ing the color of a pixel in an image by averaging samples of the
radiance L in query locations seen through that pixel. In order to
stay within a finite amount of memory, the computation proceeds in
passes. For each pass a set of photons is generated in order to com-
pute the radiance in a set of query locations, which is accumulated
in the pixels.

2 Implicit Hierarchy for Range Queries

Simultaneously considering all range queries of a pass results in a
recursive divide-and-conquer Algorithm 1. Recursion is terminated
whenever the number of remaining query locations falls below a
selected threshold or the set cannot be partitioned further. Upon
termination, the contribution of each remaining photon to each re-
maining query location is computed.

*e-mail: keller.alexander@gmail.com
fe-mail: marc@mental . com

fe-mail: leonhard.gruenschloss@gmail.com
8e-mail: daniel@mental.com

Algorithm 1: Simultaneous hierarchical range search.

Integrate (QuerylLocations, Photons)
if QueryLocations # () and Photons # () then
PhotonsInBBox < Photons N BBox (QueryLocations) ;
if PhotonsInBBox then
if Terminate (QueryLocations, PhotonsinBBox) then
| AddRadiance (QuerylLocations, PhotonsinBBox) ;
else
(QLoc1, QLoc2) < Partition (QuerylLocations) ;
Integrate (QlLoc1, PhotonsinBBox) ;
Integrate (QLoc2, PhotonsinBBox) ;

end
end

end

In the recursion step overlapping range queries share results and
computations are restricted to regions where both query locations
and photons reside, as illustrated in Figure 1. The recursive algo-
rithm in fact traverses a bounding volume hierarchy, which resem-
bles collision detection algorithms, however, this hierarchy is never
explicitly stored. As the working set becomes more localized with
recursion depth, performance benefits from processor caches.

A parallel version has been implemented in CUDA for NVIDIA
GPUs. In a breadth first approach, each step of the recursive algo-
rithm is parallelized, while large nodes are partitioned into smaller
chunks in order to increase occupancy and such efficiency. Parti-
tioning the query locations uses a segmented scan, while ordering
the photons accordingly must use two segmented scans as replica-
tion may occur. Finally, active nodes are compacted.

In summary, the new algorithm significantly improves the perfor-
mance of progressive photon mapping.

References

KELLER, A., GRUNSCHLOSS, L., AND DROSKE, M. 2010.
Quasi-Monte Carlo progressive photon mapping. under revision.



