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GPU Programming Hierarchy Salient characteristics of Persistent Threads 

Core limitations of current GPGPU programming* 

Use Cases - Results 

1. Host-Device Interface: 

 Master-slave processing: Only the host (master) processor has the ability to issue 
commands for data movement, synchronization, and execution on the device outside 
of a kernel. 

 Kernel size: The dimensions of a block, and the number of blocks per kernel 
invocation are passed as launch configuration parameters to the kernel invocation 
API. 

2. Device-side Properties: 

 Lifetime of a Block: Every block is assumed to perform its function independent of 
other blocks, and retire upon completion of its task. 

 Hardware Scheduler: The hardware manages a list of yet-to-be executed blocks and 
automatically schedules them onto a multi-processor (SM) at runtime. As scheduling 
is a runtime decision, the PM offers no guarantees of when or where a block will be 
scheduled. 

 Block State: When a new block is mapped onto a particular SM, the old state (register 
and shared memory) on that SM is considered stale, disallowing any communication 
between blocks, even when run on the same SM. 

3. Memory Consistency: 

 Intra-block: Threads within a block communicate data via either local (per-block) or 
global (DRAM) memory. Memory consistency is guaranteed between two sections 
within a block if they are separated by an appropriate intrinsic function (typically a 
block-wide barrier). 

 Inter-block: The only mechanism for inter-block communication is global memory. 
Because blocks are independent and their execution order is undefined, the most 
common method for communicating between blocks is to cause a global 
synchronization by ending a kernel and starting a new one. Inter-kernel 
communication through atomic memory operations is also an option, but may not be 
suitable or deliver sufficient performance for some application scenarios. 

4. Kernel Invocations: 

 Producer-consumer: Due to the restrictions imposed on inter-block data sharing, 
kernels can only produce data as they run to completion. Consuming data on the GPU 
produced by this kernel requires another kernel. 

 Spawning kernels: A kernel cannot invoke another copy of itself (recursion), spawn 
other kernels, or dynamically add more blocks. This is especially costly in cases where 
data reuse exists between invocations. 

# Use Case Scenario Advantage of Persistent Threads 

1 
CPU-GPU 

Synchronization 

Kernel A produces a 
variable amount of data 
that must be consumed 
by Kernel B 

nonPT implementations require a round-trip 
communication to the host to launch Kernel B with the 
exact number of blocks corresponding to work items 
produced by Kernel A. 

2 Load Balancing 
Traversing an irregularly-
structured, hierarchical 
data structure 

PT implementations build an efficient queue to allow a 
single kernel to produce a variable amount of output 
per thread and load balance those outputs onto threads 
for further processing. 

3 
Maintaining 
Active State 

A kernel accumulates a 
single value across a large 
number of threads, or 
Kernel A wants to pass 
data to Kernel B through 
shared memory or 
registers 

Because a PT kernel processes many more items per 
block than a nonPT kernel, it can effectively leverage 
shared memory across a larger block size for an 
application like a global reduction. 

4 
Global 

Synchronization 

Global synchronization 
within a kernel across 
workgroups 

In a nonPT kernel, synchronizing across blocks within a 
kernel is not possible because blocks run to completion 
and cannot wait for blocks that have not yet been 
scheduled. The PT model ensures that all blocks are 
resident and thus allows global synchronization. Persistent Threads is useful in addressing most of these limitations! 

*All limitations listed here are applicable to OpenCL, while the newest version of CUDA coupled with the latest generation NVIDIA architecture has addressed some of these. 
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An illustration of nonPT and PT style programming through an example image of 64x64 pixels which needs to be vertically stretched - In this example, 16x16 
threads combine to form a block and process the image in a set of 4x4 blocks. The GPU has four SMs labeled 0--3. We assume a load-balanced system where 
each SM runs one block at a time and four blocks each. For nonPT, the kernel launches with 16 blocks. At run time the hardware non-deterministically schedules 
new blocks to SMs as other blocks complete. A PT kernel launches four thread groups, along with a 16-entry queue; each entry represents a block index. Through 
the work queue, the programmer controls the scheduling of blocks to SMs. In this example, each SM processes all blocks within a vertical sub-section of the 
image. This helps performance when the algorithm requires sharing neighboring pixels between vertical blocks. 

1. Software, not hardware, schedules work: The current programming environment does 
not expose the hardware scheduler to the programmer, thus limiting the ability to 
exploit workload communication patterns. In contrast, the PT style bypasses the 
hardware scheduler by relying on a work queue of all blocks that are to be processed for 
kernel execution to complete. When a block finishes, it checks the queue for more work 
and continues doing so until no work is left, at which point the block retires. Depending 
on the communication pattern exhibited by the algorithm, the queue can either be static 
(known at compile time) or dynamic (generated at runtime) and can be used to control 
the order, location, and timing of the execution of each block. 

2. Maximal Launch – A kernel uses only as many threads as can be concurrently scheduled 
on the SMs: Since each thread remains persistent throughout the execution of a kernel, 
and is active across traditional block boundaries until no work remains, the programmer 
schedules only as many threads as the GPU SMs can concurrently run. This represents 
the upper bound on the number of threads. The lower bound can be as small as the 
number of threads required to launch a single block. Since a hardware thread and 
software thread do not have a direct relation in PT style of programming, we will 
distinguish software blocks from thread groups. A thread group has the same 
dimensions as a block, but forms by combining hardware threads launched at kernel 
invocation from one or more software blocks, and remains active until no more work is 
left. 

Use Case #1: CPU-GPU Synchronization Use Case #2: Load Balancing 

Use Case #3: Active State Use Case #4: Global Synchronization 
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(a) Full Forest 
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Minor modifications for native PT support 

1. Hardware 

 Work Queues 

 Fast Atomics 

 Multi-Block Synchronization 

2. Software 

 Scheduler 

3. Language & API 

 Comm. Pattern 

 API 

PT brings order to the otherwise undefined behavior of (CUDA/OpenCL) nonPT model(s) 
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Nvidia: 32 
AMD: 64 

Conclusion: PT is better on specific combinations of variables. PT outperforms nonPT on 
small, irregular work and regular deeply-recursive work, and in either of our forest 
implementations PT tends to outperform nonPT when there are not many initial input 
elements and when the growth in elements is fairly constrained. 

Conclusion: 1: The amount of arithmetic to be performed has little bearing on the 
performance of global synchronization. 2: the benefit of syncing on the GPU increases 
asymptotically with the number of syncs 

Conclusion: As the number of input items to be processed increases, a PT approach results 
in greater speed-up, noticeably beyond 32 on the GTX295 (which has 30 SMs). 

Conclusion: We see two different trends on two different processors. As the number of 
blocks to be processed increases, on the 9400M regardless of whether the workload is CI 
or CMI, we see a declining gain in speedup; while on the 295GTX we see a slow-down. 
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