A Study of Persistent Threads Style Processing on the GPU

Kshitij Gupta, Jeff A. Stuart, John D. Owens
University of California, Davis UCDAVIS

UNIVERSITY OF CALIFORNIA

Use Cases - Results

Salient characteristics of Persistent Threads

1. Software, not hardware, schedules work: The current programming environment does
not expose the hardware scheduler to the programmer, thus limiting the ability to

Unified
= Unified[shadér exploit workload communication patterns. In contrast, the PT style bypasses the CPU __da_ta__l CPU __da_ta__l_ﬂl = ITltl'anu'ts' |
— cqre hardware scheduler by relying on a work queue of all blocks that are to be processed for parar;,::kp parar;::_kp A;_ = e
ISDL';"C'ZliitOr spo || sp1 | Sp7 GPU kernel execution to complete. When a block finishes, it checks the queue for more work = t, i :Ei AR A A AR & R
SMO i and continues doing so until no work is left, at which point the block retires. Depending ____ g‘» tope m | L0 8680 b0 808 bbb dbdo d6dd dad o
/ ~ | e o on the communication pattern exhibited by the algorithm, the queue can either be static paraZ:U_kC faurer g G:U‘_kc (2) Full Forest
Wars E'|“S'P'O"|'|“S'P'l"|“_'_'_'_'_ jjj e p— | . (known at compile time) or dynamic (generated at runtime) and can be used to control e = }
e | the order, location, and timing of the execution of each block. T T PR
Block/ B T S — 5 Shader B == == 2. Maximal Launch — A kernel uses only as many threads as can be concurrently scheduled ‘ B
Wavefront Sha:erc = on the SMs: Since each thread remains persistent throughout the execution of a kernel, UE
] and is active across traditional block boundaries until no work remains, the programmer (5 Tilted Forest
Multinle s = schedules only as many threads as the GPU SMs can concurrently run. This represents
Blocks/SM the upper bound on the number of threads. The lower bound can be as small as the
? (i) number of threads required to launch a single block. Since a hardware thread and - v— B e
mepr o software thread do not have a direct relation in PT style of programming, we will i | oo o s s o

distinguish software blocks from thread groups. A thread group has the same
dimensions as a block, but forms by combining hardware threads launched at kernel

e o . . invocation from one or more software blocks, and remains active until no more work is i)
3 g g
Core limitations of current GPGPU programming left.
1. Host-Device Interface: A sample image of 64x64
pixels divided into 16 nonPT illustration PT illustration
= i . ih I Tl W W W0 uW g, e wm o ww mww R Conclusion: PT is better on specific combinations of variables. PT outperforms nonPT on
. MaSter SIave proceSSIng' Only the hOSt (maSter) processor has the ablllty tO ISSU€e Conclusion: We see two- different trends on two different processors. As the number of small, irregular-work-and regular deeply-recursive work, and in either-of our forest
1 1 1 1 1 blocks to be processed increases, on the 9400M regardless of whether the workload is Cl implementations PT tends to outperform nonPT when there are not many initial input
Commands fOr data movement’ SynChronlzatlon’ and execution on the deVICe OUtSIde o ‘_O: or.CMI; we see a declining gain in speedup; while on the 295GTX we see a slow-down. elements and when the growth in-elements is fairly constrained.
of a kernel. o s
£ i Jse Case #3: Active State Jse Case #4: Global Synchronizatior
-) = - s sy ldJsD JoudL.s 0 S = Id L) = =4
= Kernel size: The dimensions of a block, and the number of blocks per kernel 3 <
c ()
> > = . 5 > = K I- Kernel-
invocation are passed as launch configuration parameters to the kernel invocation s X X1 -
m—— L o ¢ e
API . Kernel- GPU GPU Kernel- GPU
. . . = 0 1 2 | 3 X2 Kernel-X’ = Kernel-X X2 Kernel-i(!’:_I _______________
2. Device-side Properties: © E__— o e == vair 2
—— = = = = — X3 X3
= Lifetime of a Block: Every block is assumed to perform its function independent of B (@ nonpT (b) PT @ nonPT (b1 PT
other blocks, and retire upon completion of its task. - 2 ooy vooss 6 comssne
§ = s — g1°'n\Fl’VTorkload of 150000 nonPT Blocks - 3::'?“ 500 nonPT Blocks
= Hardware Scheduler: The hardware manages a list of yet-to-be executed blocks and s 50 3 P Wt o 15000 T Bk 4 Monof 1000 none ok
. . . = - - T <, 41 s—a PT (Workload of 150 nonPT Blocks) il — Work o;;go no;TPTBIEuo:ks |
automatically schedules them onto a multi-processor (SM) at runtime. As scheduling 3 z kol S0 nenPT sk
is a runtime decision, the PM offers no guarantees of when or where a block will be e il SR P | e
vertically stretched; 16 blocks mapped to the 4 4 SMs => 4 thread groups)
SChEdU Ied : processed on a 4-SM GPU SMs in random order 2 i
| BIOCk State: When a hew b|ock is mapped onto a pa rticu|ar SM’ the Old state (register Ahn illt:jstratiog of no:c\PT andeIDT ityledprogrammr:ng through an exafmpletjlmafe 0L64x64 Eixe:cs which nle(:)df t(cj) be vertically stretcTedd-;)n Ithis eé(ample, 16;(16 %’11 ia
= threads combine to form a block and process the image in a set of 4x4 blocks. The GPU has four SMs labeled 0--3. We assume a load-balanced system where I zr//H ' — —
and shared memOry) on that SM is considered Stale, dlsa||OW|ng any communication each SM runs one block at a time and four blocks each. For nonPT, the kernel launches with 16 blocks. At run time the hardware non-deterministically schedules ’ ’ 7%
b bl k h h SM new blocks to SMs as other blocks complete. A PT kernel launches four thread groups, along with a 16-entry queue; each entry represents a block index. Through 10 2 :
etween OC Sl even when run on the same = the work queue, the programmer controls the scheduling of blocks to SMs. In this example, each SM processes all blocks within a vertical sub-section of the
3 M C = t image. This helps performance when the algorithm requires sharing neighboring pixels between vertical blocks. ol |
. emory consisiency. | o f
* |ntra-block: Threads within a block communicate data via either local (per-block) or . . |
_ _ (P ck) # Use Case Scenario Advantage of Persistent Threads S —| ; s i
global (DRAM) memory. Memory consistency is guaranteed between two sections
1 1 1 4 H H 1 1 H Conclusion: As the number of input items to-be processed increases, a PT approach results Soackision: LT Heameunt ot adtamotc o:ne perionues s Rte Deaut 0n e
within a block if they are separated by an appropriate intrinsic function (typically a Kernel A produces a nonPT implementations require a round-trip e B sttt e ool i e e
block-wide barrier). 1 CPU-GPU variable amount of data communication to the host to launch Kernel B with the
= Inter-block: The only mechanism for inter-block communication is global memory Synchronization that must be consumed exact number of blocks corresponding to work items . . o . i
' ' by Kernel B produced by Kernel A. Minor modifications for native PT support
Because blocks are independent and their execution order is undefined, the most _ _ , o
— . . . PT implementations build an efficient queue to allow a
common method for communicating between blocks is to cause a global Traversing an irregularly- single kernel to produce a variable amount of output 1 Hard
. . . . : i i . Adraware
synchronization by ending a kernel and starting a new one. Inter-kernel 2 LoadBalancing structured, hierarchical ' ") oo nce those outbuts onto threads
ot : - - - data structure P . P = \Work
communication through atomic memory operations is also an option, but may not be for further processing. ork Queues
suitable or deliver sufficient performance for some application scenarios. A kernel accumulates a = Fast Atomics
: : single value across a large : : (At
4. KernEI Invocations: nurgnber of threads. or & Because a PT kernel processes many more items per = Multi-Block SynChronlzathn
= Producer-consumer: Due to the restrictions imposed on inter-block data sharing, 3 Maintaining e t0 Dass block than a nonPT kernel, it can effectively leverage 2. Software AT Example Modcaioms fo = DA Dpent APR TOr perivien fuead
= P - CUDA API:
" | | d = th i — C ing dat the GPU Active State data to K B th H shared memory across a larger block size for an current - <<< grid, block, shmem »>»
erneils can only proauce data as they run to compiletion. Lonsuming data on the ata to Kerne roug Joplication like a slobal reduction = Scheduler broposed : <<< grid, block, shmem, pt >
produced by this kernel requires another kernel. shared memory or PP 5 ' OpenCL AP
= = = = r | r 3. Lan ua e & API current : cLEnqueueNDRangeKernel(cmdQ, kern, wkDim, gOff, #WrkGrp, *WrkItm, numEve, *Evelist, =*Eve)
n Spawn"‘]g kernels: A kernel Cannot |nVOke another Copy Of |tse|f (recur5|0n), Spawn eg sters I PT k I h bl k h g g proposed : cLEnqueueNDRangeKernel(cmdQ, kern, pt, wkDim, gOff, *WrkGrp, *WrkItm, numEve, *EvelList, *Eve)
. — : : n anon ernel, synchronizing across blocks within a u , o m . ~ . . . N o
Othel‘ kernE|S, or dynam|ca”y add more bIOCkS. ThIS is espeC|a”y COStly in cases Where y g . Comm Pattern Des-:_‘npnon. ;r?an take the following Parameters c;a).h'tONPT. n:_:-nPT ke_rnel lalaunch.,.{b} M.‘FLX__TGROUP"SI. PT kernel is 1n‘f0cated. ith
maximal launch; (¢) USER_TGROUPS: PT kernel is invocated with user-supplied grid or wkDim. To avoid GS deadlock issues, if the
, , , Global synchronization kernel is not possible because blocks run to completion imat e . . ! To :
data reuse ex'sts between |nvocat|0ns GIObaI | APl user-supplied thread group size is greater than that possible for maximal launch, the kernel would exit with a pre-set error code.
. @ 4 Synchronization within a kernel across and cannot wait for blocks that have not yet been
: . : A s workgroups scheduled. The PT model ensures that all blocks are ; : ; :
Persistent Threads is useful in addressing most of these limitations! PT brings order to the otherwise undefined behavior of (CUDA/OpenCL) nonPT model

resident and thus allows global synchronization.

*All limitations listed here are applicable to OpenCL, while the newest version of CUDA coupled with the latest generation NVIDIA architecture has addressed some of these.

