
A Study of Persistent Threads Style Processing on the GPU

Kshitij Gupta, Jeff A. Stuart, John D. Owens
University of California, Davis

GPU Programming Hierarchy Salient characteristics of Persistent Threads

Core limitations of current GPGPU programming*

Use Cases - Results

1. Host-Device Interface:

 Master-slave processing: Only the host (master) processor has the ability to issue
commands for data movement, synchronization, and execution on the device outside
of a kernel.

 Kernel size: The dimensions of a block, and the number of blocks per kernel
invocation are passed as launch configuration parameters to the kernel invocation
API.

2. Device-side Properties:

 Lifetime of a Block: Every block is assumed to perform its function independent of
other blocks, and retire upon completion of its task.

 Hardware Scheduler: The hardware manages a list of yet-to-be executed blocks and
automatically schedules them onto a multi-processor (SM) at runtime. As scheduling
is a runtime decision, the PM offers no guarantees of when or where a block will be
scheduled.

 Block State: When a new block is mapped onto a particular SM, the old state (register
and shared memory) on that SM is considered stale, disallowing any communication
between blocks, even when run on the same SM.

3. Memory Consistency:

 Intra-block: Threads within a block communicate data via either local (per-block) or
global (DRAM) memory. Memory consistency is guaranteed between two sections
within a block if they are separated by an appropriate intrinsic function (typically a
block-wide barrier).

 Inter-block: The only mechanism for inter-block communication is global memory.
Because blocks are independent and their execution order is undefined, the most
common method for communicating between blocks is to cause a global
synchronization by ending a kernel and starting a new one. Inter-kernel
communication through atomic memory operations is also an option, but may not be
suitable or deliver sufficient performance for some application scenarios.

4. Kernel Invocations:

 Producer-consumer: Due to the restrictions imposed on inter-block data sharing,
kernels can only produce data as they run to completion. Consuming data on the GPU
produced by this kernel requires another kernel.

 Spawning kernels: A kernel cannot invoke another copy of itself (recursion), spawn
other kernels, or dynamically add more blocks. This is especially costly in cases where
data reuse exists between invocations.

Use Case Scenario Advantage of Persistent Threads

1
CPU-GPU

Synchronization

Kernel A produces a
variable amount of data
that must be consumed
by Kernel B

nonPT implementations require a round-trip
communication to the host to launch Kernel B with the
exact number of blocks corresponding to work items
produced by Kernel A.

2 Load Balancing
Traversing an irregularly-
structured, hierarchical
data structure

PT implementations build an efficient queue to allow a
single kernel to produce a variable amount of output
per thread and load balance those outputs onto threads
for further processing.

3
Maintaining
Active State

A kernel accumulates a
single value across a large
number of threads, or
Kernel A wants to pass
data to Kernel B through
shared memory or
registers

Because a PT kernel processes many more items per
block than a nonPT kernel, it can effectively leverage
shared memory across a larger block size for an
application like a global reduction.

4
Global

Synchronization

Global synchronization
within a kernel across
workgroups

In a nonPT kernel, synchronizing across blocks within a
kernel is not possible because blocks run to completion
and cannot wait for blocks that have not yet been
scheduled. The PT model ensures that all blocks are
resident and thus allows global synchronization. Persistent Threads is useful in addressing most of these limitations!

*All limitations listed here are applicable to OpenCL, while the newest version of CUDA coupled with the latest generation NVIDIA architecture has addressed some of these.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

2 3 1 0

1 0 3 2

3 2 0 1

0 1 2 3

0 1 2 3

A sample image of 64x64
pixels divided into 16

blocks

So
ftw

are
 vie

w

nonPT illustration PT illustration

vertically stretched;
processed on a 4-SM GPU

H
ard

w
are

 vie
w

In

p
u

t
Im

ag
e

O

u
tp

u
t

Im
ag

e

An illustration of nonPT and PT style programming through an example image of 64x64 pixels which needs to be vertically stretched - In this example, 16x16
threads combine to form a block and process the image in a set of 4x4 blocks. The GPU has four SMs labeled 0--3. We assume a load-balanced system where
each SM runs one block at a time and four blocks each. For nonPT, the kernel launches with 16 blocks. At run time the hardware non-deterministically schedules
new blocks to SMs as other blocks complete. A PT kernel launches four thread groups, along with a 16-entry queue; each entry represents a block index. Through
the work queue, the programmer controls the scheduling of blocks to SMs. In this example, each SM processes all blocks within a vertical sub-section of the
image. This helps performance when the algorithm requires sharing neighboring pixels between vertical blocks.

1. Software, not hardware, schedules work: The current programming environment does
not expose the hardware scheduler to the programmer, thus limiting the ability to
exploit workload communication patterns. In contrast, the PT style bypasses the
hardware scheduler by relying on a work queue of all blocks that are to be processed for
kernel execution to complete. When a block finishes, it checks the queue for more work
and continues doing so until no work is left, at which point the block retires. Depending
on the communication pattern exhibited by the algorithm, the queue can either be static
(known at compile time) or dynamic (generated at runtime) and can be used to control
the order, location, and timing of the execution of each block.

2. Maximal Launch – A kernel uses only as many threads as can be concurrently scheduled
on the SMs: Since each thread remains persistent throughout the execution of a kernel,
and is active across traditional block boundaries until no work remains, the programmer
schedules only as many threads as the GPU SMs can concurrently run. This represents
the upper bound on the number of threads. The lower bound can be as small as the
number of threads required to launch a single block. Since a hardware thread and
software thread do not have a direct relation in PT style of programming, we will
distinguish software blocks from thread groups. A thread group has the same
dimensions as a block, but forms by combining hardware threads launched at kernel
invocation from one or more software blocks, and remains active until no more work is
left.

Use Case #1: CPU-GPU Synchronization Use Case #2: Load Balancing

Use Case #3: Active State Use Case #4: Global Synchronization

G
P

U

0 1 2 3

CPU

GPU’-kC

GPU-kP

data

param

CPU

CPU

GPU-kP

data

param

GPU-kC

param

d
ata

d
at

a

read-back
barrier trb

tcpu

tlaunch

(a) nonPT (b) PT

Initial Inputs

o

f
le

ve
ls

Initial Inputs

o

f
le

ve
ls

(a) Full Forest

(b) Tilted Forest

Minor modifications for native PT support

1. Hardware

 Work Queues

 Fast Atomics

 Multi-Block Synchronization

2. Software

 Scheduler

3. Language & API

 Comm. Pattern

 API

PT brings order to the otherwise undefined behavior of (CUDA/OpenCL) nonPT model(s)

SM0

SP0 SP1 SP7

SP0 SP1 SP7 SP0 SP1 SP7

Warp0 Warp1

Block0 Block1

Warp

Block/
Wavefront

Multiple
Blocks/SM

SIMD Vector
Processor

16 blocks mapped to the 4
SMs in random order

4 SMs => 4 thread groups

D
R

A
M

Kernel-
X2

Kernel-
X1

GPU
Kernel-X

cross-block
barrier #1

cross-block
barrier #2

Kernel-
X3

GPU
Kernel-X’

PT
barrier #1

PT
barrier #2

(a) nonPT (b) PT

GPU

Nvidia: 32
AMD: 64

Conclusion: PT is better on specific combinations of variables. PT outperforms nonPT on
small, irregular work and regular deeply-recursive work, and in either of our forest
implementations PT tends to outperform nonPT when there are not many initial input
elements and when the growth in elements is fairly constrained.

Conclusion: 1: The amount of arithmetic to be performed has little bearing on the
performance of global synchronization. 2: the benefit of syncing on the GPU increases
asymptotically with the number of syncs

Conclusion: As the number of input items to be processed increases, a PT approach results
in greater speed-up, noticeably beyond 32 on the GTX295 (which has 30 SMs).

Conclusion: We see two different trends on two different processors. As the number of
blocks to be processed increases, on the 9400M regardless of whether the workload is CI
or CMI, we see a declining gain in speedup; while on the 295GTX we see a slow-down.

Kernel-
X2

Kernel-
X1

Kernel-
X3

GPU
Kernel-X’

(a) nonPT (b) PT

Unified Shader
Core

ibuff

obuff

ibuff

obuff

ibuff

obuff

ibuff

obuff

ibuff

obuff

ibuff

obuff

Shader A

Shader B

Shader C

Discrete
design

2006

Irregular
Workloads

(i)

(ii)

(iii)
?

Unified
Shader

