
Ray Tracing Visualization Toolkit

Jeremy Fisher Daniel Eby Ed Quigley Gideon Ludwig Christiaan Gribble∗

Department of Computer Science
Grove City College

Figure 1: Ray Tracing Visualization Toolkit. A collection of C++ libraries and an extensible GUI integrate existing renderers via a flexible
plug-in architecture to support the visual analysis of ray-based rendering algorithms. Effective visualization of ray tracing operations may
promote better understanding—and, ultimately, more efficient implementation—of these algorithms.

1 Introduction
Monte Carlo rendering algorithms typically simulate light transport
throughout an environment via ray tracing. Even with recent ad-
vances targeting highly parallel platforms [van Antwerpen 2011],
high-quality images often require many seconds of computation to
converge. The visual analysis of ray tracing operations may pro-
mote a better understanding of the way in which computation pro-
ceeds and expose opportunities to utilize hardware resources more
effectively. This work-in-progress introduces the Ray Tracing Vi-
sualization Toolkit (rtVTK), a collection of C++ libraries and an
extensible GUI designed to support the visual analysis of ray-based
rendering algorithms.

2 Components
rtVTK consists of several components that combine to form a com-
plete ray tracing visualization framework.

Rendering state recording library. An OpenGL-style API
called rl captures rendering state in client applications. Existing
renderers are instrumented with calls to the rl engine, and per-ray
data—including arbitrary client payloads—is recorded throughout
rendering. For example, the following pseudocode demonstrates
the use of core rl functionality in a basic recursive ray tracer:

// loop over pixels
for (uint y = 0; y < height; ++y)
for (uint x = 0; x < width; ++x)
// generate visibility ray and trace
rlBeginTree(x, y);
trace(visibilityRay, ...);
rlEndTree();

trace(const Ray& r, ...)
// perform ray tracing computations and recurse
rlAddRay(r.o, r.d, r.t, ray.type, &my_data, sizeof(MyData));
rlDescendTree();
trace(nextRay, ...);
rlAscendTree();

The resulting state is then explored using the rtVTK visualization
engine (Figures 1 and 2) or by layering additional components
above the existing engine via plug-ins.

rl currently supports three modes of operation: immediate mode,
for on-line renderers that export the rtVTK plug-in interface; write
mode, for clients that capture rendering state for later processing;
and read mode, for data visualization and other post-processing
tasks. Common high-level operations such as ray tree traversal are
implemented easily with rlut, a collection of utility functions that
aggregate low-level rl operations. Finally, wrapper classes provide
C++ bindings for seamless integration with object-oriented render-
ing clients.

∗e-mail: cpgribble@gcc.edu

Figure 2: Ray state visualization. Existing renderers integrate with
rtVTK by exporting the rendering client plug-in interface. Here,
ray state from a GPU path tracer plug-in is explored using the core
rtVTK visualization facilities and GUI.

rtVTK visualization engine. An interactive GPU path tracing
plug-in and OpenGL/rl visualization plug-ins provide core ren-
dering and visualization facilities. The rtVTK plug-in manager en-
ables additional renderers and visualization components to extend
the core facilities in a flexible, highly configurable manner. Finally,
these elements are integrated with an extensible GUI to provide
a common ray tracing visualization process across multiple plat-
forms, including Windows, Linux, and Mac OS X.

3 Discussion
Monte Carlo light transport algorithms must process billions of rays
to generate highly realistic images. Visual analysis of the resulting
state may lead to insights that allow more efficient implementation
of these algorithms. The Ray Tracing Visualization Toolkit is de-
signed to support these goals.

As the rtVTK framework matures, a number of interesting ren-
dering and visualization problems—for example, new methods for
real-time Monte Carlo ray tracing and new techniques to meaning-
fully represent large quantities of ray tracing program state—can be
explored both thoroughly and rapidly.

Acknowledgments
This work was funded by grants from the II-VI Foundation and the
Grove City College Swezey Scientific Research and Instrumenta-
tion Fund. The GPUs used in this research were generously donated
by NVIDIA through their Professor Partnership Program.

References
VAN ANTWERPEN, D. 2011. Improving SIMD efficiency for parallel Monte Carlo

light transport on the GPU. In Proceedings of the Conference on High Performance
Graphics 2011. To appear.


