
Early-stage Thread Culling Unit for Mobile GPGPU Applications

Yu-Jung Chen, Pai-Shun Ting, Meng-Lin Yu, and Shao-Yi Chien

Graduate Institute of Electronics Engineering and Department of Electrical Engineering

National Taiwan University

1. Introduction

Redundant or unnecessary threads execution devastates parallel
computing performance in GPUs. To efficiently utilize processor
resources in GPUs for rendering applications, various techniques
have been proposed in a graphics pipeline. Early-z culling
[Hasselgren and Akenine-Möller 2007] avoids the redundant
shader execution for occluded fragments; early-stencil culling [del
Barrio et al. 2006] and scissor test in the rasterization stage can
merely permit performing shader programs for fragments in
validated regions. These features greatly enhance the rendering
performance.

To utilize the plentiful computing resources of GPUs, it is known
that most low-level image processing and computer vision
algorithms can be effectively parallelized on GPUs due to the
operation independence between regions or pixels, such as image
filtering and linear feature extraction; however, it is not the case
for high-level applications, where object-based processing and
Region of Interest (ROI) are often involved. Not every extracted
feature is significant for later processing stages and substantial
feature information is generally concentrated in salient regions or
ROI.

Similar to the early-stage fragment culling in rendering

architectures, our work extends the concept to handle such

predictable divergent thread behavior for multimedia GPGPU

applications. A simple yet efficient configurable early-stage

thread culling unit (TCU) is proposed into our mobile GPU

architecture to mitigate the execution efforts of divergent threads

with identified conditions.

2. Early-stage Thread Culling Unit

Many high-level computer vision applications have the
characteristics of determining validated candidates by evaluating
the filtered coefficients or masks. Once incorporating such
regional scheme, allocated parallel threads are altered into sparse
or local grouping threads. It induces low processor utilization for
divergent thread execution since the branch instructions
repetitively invoke processors to determine the effective branches,
and the synchronization among divergent threads required to be
carefully managed. Alternatively, predicate instruction tackles the

synchronization problem through performing both taken and not
taken threads, but only validating the taken fraction. Although
predicate execution relieves the synchronization efforts of
managing divergent threads, redundant thread execution degrades
the performance.

Extending the concept of early-stencil test, our proposed early-

stage thread culling unit (TCU) can enhance the processing

efficiency by pre-determining the branch condition of divergent

threads. Each parallel thread has to fetch the coefficient or pre-

processed mask value for determining the passed or failed case.

Applying the early fetch-and-compare architecture, the proposed

TCU, as shown in Figure 1(c), is integrated with the rasterizer. It

can fetch the corresponding coefficients or mask values from a

dedicated memory and validate effective threads through certain

comparing configurations. However, when the throughput of the

culling unit is not high enough, processors are possibly stalled to

wait for dispatched threads. For the purpose of efficiency, the

culling unit is employed with a cache. The cache size is

determined by evaluating the hit rate and processor idle ratio, and

a 1KB cache is selected after analysis.

3. Results

To evaluate the performance of the proposed architecture, Viola-

Jones face detection framework and salient region linear feature

extraction algorithms are chosen for analysis. Our simulation

results show that, with early-stage thread culling unit, GPUs can

improve up to 24.5x and 1.8x in performance for Viola-Jones face

detection framework compared to the predicate execution and

branch instruction. Furthermore, 4.3x and 1.4x improvement in

salient region linear feature extraction can be achieved as well.

References

DEL BARRIO, V., GONZALEZ, C., ROCA, J., FERNANDEZ, A., AND

ESPASA, R. 2006. ATTILA: A cycle-level execution-driven
simulator for modern GPU architectures. In Proceedings of the
IEEE International Symposium on Performance Analysis of
Systems and Software. IEEE, 231–241.

HASSELGREN, J., AND AKENINE-Möller, T. 2007. PCU: the
programmable culling unit. In Proc. of SIGGRAPH ’07, ACM.

(a) (b)

Figure 1: (a) Salient region feature extraction with proposed TCU. (b) Speedup of (a) with predicate, jump and proposed TCU. (c) GPU architecture.

0

1

2

3

4

5

6

7

8

9

clock boy badminton palace mule Average

S
p

ee
d

 U
p

Predicate Jump TCU_1KB

1.4x1.4x

1.3x
1.3x

1.4x

1.6x
Memory

Saliency Map

TCU

Passed Threads

Gabor

Kernel

Unified Cores

Vertex Scheduler Pixel Scheduler

Rasterizer

CMA

ROP

Data Memory Frame Buffer

Texture Memory

TCU

Memory

Core Core CoreCore

Texture Unit Texture Unit

L1 Cache

CFU

L1 Cache

CFU

L1 Cache

Texture Unit

CFU

L1 Cache

Texture Unit

CFU

(c)

