
2011

SAH KD-Tree Construction on GPU 	

Zhefeng Wu，Fukai Zhao，Xinguo Liu

CAD&CG, Zhejiang University	

2011 Outline

•  Motivation
•  Background and related work
•  SAH KD-tree construction

– O(N log N) sequential algorithm
– Parallel algorithm on GPU

•  Result and conclusion

2011 Motivation

•  Ray-tracing
– Ray-primitive intersection
– Multi-level/bounce ray-tracing

•  Render dynamic scenes
–  Save the expensive building cost
– For real-time ray-tracing

•  Goal
– GPU generator - speed
– Precise SAH with clipping - quality

2011 Background and related work
•  Inner Nodes: determine the spatial splitting
•  Leaf Nodes : represent the primitive set

2011 Background and related work	

•  Choose the candidate split planes
•  Evaluate SAH at the candidates
•  Split the node into two child nodes by the optimal

split plane (with the lowest SAH)
•  Distribute the primitives among children
•  Repeat recursively on the children

Key Issue: how to find the best split planes

2011 Optimal KD-tree

•  Heuristics for partitioning

•  SAH: CT + CI (NLSL + NRSR) / S

2011 Optimal KD-tree

•  Clipping the primitives against the child
nodes and compress the AABBs

2011 Challenges issues with SAH
•  Slow to build
•  Compute SAH for all candidate planes

CT + CI (NLSL + NRSR) / S
–  Count the primitive numbers in both child nodes

 NL and NR

2011 Challenges issues with SAH

•  Complexity of SAH KD-tree [Wald 2006]
– Naïve O(N2) method

•  Iterating all triangles and computing NL and NR

– O(N log2N) method
•  Sort the primitive AABBs in the parent node in

advance

– O(N logN) method
•  Reuse the order across the tree levels

the theoretical lower bound

2011 Previous Approaches
•  Restricting the possible split by space discretization

– Hurley et al. 2002, Shevtsov et al. 2007

2011 Previous Approaches

•  Sub sampling and fitting the SAH cost
function
– Hunt et al. 2006 (piecewise quadratic function)

2011 Previous Approaches
•  Parallel construction on Multi-core CPUs

–  Popov et al. 2006 4 CPUs

–  Shevtsov et al. 2007 dual core 2 CPUs
–  Choi et al. 2010 32-core CPUs

•  Parallel on GPU
–  Zhou et al. 2008

•  spatial median split for large nodes in the upper levels
•  Switch to SAH for the small nodes in the lower levels.

2011 Previous Approaches

 SAH Optimal Splitting Parallel Granularity Hardware

Samp
ling

Full hybrid Clip-
Triangle

Subtree Node Triangle CPUs GPU

Hunt et
al. [2006]

√
 √

 √

Popov et al.
[2006]

√
 √

√
 √

Shevtsov et
al [2007]

√
 √

√
 √

Zhou et al
[2008]

√
 √

√
√

Choi et al
[2010] √

√

√

 √

Our
Method √ √

√
√

2011 SAH KD-tree Construction	

1.  Choose the candidate split planes
2.  Evaluate SAH at the candidates
3.  Split the node into two child nodes by the

optimal split plane (with the lowest SAH)
4.  Distribute the primitives among the children
5.  Repeat 1~4 recursively on the children

Primitive AABBs	

2011 O(N logN) Sequential Algorithm

•  Define events
–  Start event – the minimum of an AABB
–  End event – the maximum of an AABB

•  3 event lists in total
–  Corresponds to the X, Y, Z axes

•  Sort the event lists during initialization
X: E1 E2, …, E2N

Y: E1 E2, …, E2N

Z: E1 E2, …, E2N

Estart	
 Eend	

Eend	

Estart	

2011 O(N logN) Sequential Algorithm

•  SelectBestPlane
–  Scan the sorted event lists

•  Increase NL for start event
•  Decrease NR for end event

–  Evaluating the SAH for the events and store the best.
•  “DivideNode”

–  Scan the triangles and distribute them to children
–  Clip the triangles against the child node’s AABB
–  Invalidate the order of the event lists

•  “SortNodeEvent”
–  Merge sort the events in each child node

2011 Parallel Construction on GPU

•  Parallel over the triangles
–  The same as Lauterbach et al. did [2009]
–  Different from [Zhou et al. 2008] over nodes

•  Using standard parallel scan primitives to
compute NL and NR ?

2011 Parallel Construction on GPU

2011 Parallel Construction on GPU

•  Clipping the triangles against the children
–  Invalidates the ordered event lists

Observation: Most are lined in order except those new
events generated by clipping. ~ N1/2	

2011 Parallel Construction on GPU

•  Case I: on the splitting axis
–  Order is inherited

2011 Parallel Construction on GPU

•  Case II: other than the splitting axis
–  The order is almost inherited except for a small part…

E'3
S'3

E'3S'3

~ N1/2	

2011 Parallel Bucket-based Sorting

Let Eparent= E1,E2,…E2M (ordered)
 Echild = e1,e2,…e2N (almost ordered, except…)

Bucket set = [E1, E2) U [E2, E3) U … U [E2M-1, E2M]
 - Using Buckets to sort Echild

1.  Find the bucket (interval) that contains ei, the

event of the child nodes
2.  Get the order index by brute-force comparison

inside the intervals.

2011 Results

•  GTX280 with 1GB memory
•  Intel Xeon dual-core 3.0G CPU with 4GB main memory
•  Stack-based tracer [Pharr and Humphreys 2004]

2011 Results

•  Demo1
•  Demo2

2011 V.S. multi-core CPU method
The image cannot be displayed. Your computer may not have enough memory
to open the image, or the image may have been corrupted. Restart your
computer, and then open the file again. If the red x still appears, you may have
to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough
memory to open the image, or the image may have been corrupted.
Restart your computer, and then open the file again. If the red x still
appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory
to open the image, or the image may have been corrupted. Restart your
computer, and then open the file again. If the red x still appears, you may
have to delete the image and then insert it again.

 1024x1024 resolution CPUs SAH KD-Tree GPU SAH KD-Tree

 Scene Triangle Build Trace Build Trace

 Bunny 69K 0.068s n/a 0.059s 0.031s

 Angel 474K 0.337s n/a 0.311s 0.036s

 Dragon 871K 0.654s n/a 0.511s 0.041s

 Happy 1087K 0.835s n/a 0.645s 0.051s

 32-cores CPU, cache-coherent, shared-memory
machine [Choi et al. 2010], Full SAH KD-Tree
without triangle clipping

2011 V.S. SAH BVH-Tree

 GTX280 with 1GB memory [Lauterbach et al. 2009]

The image cannot be displayed. Your computer may not have enough memory
to open the image, or the image may have been corrupted. Restart your
computer, and then open the file again. If the red x still appears, you may have
to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to
open the image, or the image may have been corrupted. Restart your computer,
and then open the file again. If the red x still appears, you may have to delete the
image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to
open the image, or the image may have been corrupted. Restart your computer,
and then open the file again. If the red x still appears, you may have to delete
the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to
open the image, or the image may have been corrupted. Restart your computer,
and then open the file again. If the red x still appears, you may have to delete the
image and then insert it again.

 1024x1024 resolution GPU SAH BVH-Tree GPU SAH KD-Tree
 Scene Triangle Build Trace Build Trace
 Sibenik 82K 0.144s 21.7fps 0.091s 24.4fps
 Fairy 174K 0.488s 21.7fps 0.142s 31.2fps
 Explosion 252K 0.403s 7.75fps 0.161s 32.1fps
Conference 284K 0.477s 24.5fps 0.258s 32.2fps

2011 Stage Time Analysis

“sort event” is about 1.5 times of “compute SAH”

2011 Memory Analysis

peak memory is about 5 ~7 times of the kd-tree storage

 Scene Triangles Peak-Memory Final-Memory

 Bunny 69K 33.96MB 4.86MB

 Sibenik 82K 39.34MB 7.71MB

 Fairy 174K 80.33MB 14.91MB

 Explosion 252K 86.48MB 16.36MB

 Conference 284K 159.58MB 28.74MB

 Angel 474K 218.26MB 34.33MB

 Dragon 871K 417.33MB 69.76MB

 Happy 1087K 512.65MB 87.08MB

2011 Bucket-based Sort Analysis

 The greatest maximum size appears at the
middle level

2011 Conclusion

•  A GPU KD-tree generator
– Precise SAH at all levels
– Clipping triangles
– Parallel on primitives

•  A bucket-based sort algorithm for the event list
•  Limitations

– High memory consumption
– Handle triangles for now

2011

Thanks for your attention

Questions ?

{wuzhefeng, xgliu} @ cad.zju.edu.cn

