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Outline 
Active Thread Compaction 

–  The concept 
– A “proof of concept” implementation (for Path Tracing) 
– Experimental Results 

Analysis 
– Or: “Why the heck does it still not getting faster?” 
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Motivation 
Modern archs increasingly rely on SIMD for perf 

– CUDA/Fermi: 32 “threads” in a SIMD “warp” 

Compilers/languages help avoid “ugliness” of 
SIMD… 
– OpenCL, CUDA, shading languages … give appearance of “scalar” 

code 

… but HW is still SIMD 
–  If one thread wants to do an op, entire warp does it  
– Code divergence à HW execute both paths, each w/ predication 
–  Lots of divergence: potentially running at utilization of 1/32nd 
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SIMD divergence very much real 
Ray Traversal 

– Currently traversed node: inner node vs leaf node 
–  … and leaves can have vastly different lengths 
–  And what if we support more than just triangles? 

– Varying number of traversal steps until completion 
– … 

Path tracing itself 
–  Traversal found intersection or not 
– Different material type, absorption or bounce 
– Valid light sample?  
–  In Shadow? 
– … 
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Active Thread Compaction 
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Active Thread Compaction 
Basic Idea: If cost/warp is indep of #active threads… 

–  (that’s the basic assumption of SIMD) 

… and if we have lots of low-utilized warps … 
… then “merging” low-utilized warps should save 

work 
– Eg, take 10 warps of 3 paths each; make 1 warp of 30 paths à10x 

win 

 
Conceptually simple to implement 

– Write all (logical) thread states into array 
– Perform stream compaction 
– Read “thread” state back (into other HW thread) 
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Active Thread Compaction 
Important: Two ways to look at “compaction”: 
� A “Library Tool” / programming paradigm 

–  Think in “streams” of data 
– Call kernel on streams, perform compaction of streams, etc. 



Slide 8 High-Performance Graphics 2011, Vancouver, CA 

Active Thread Compaction 
Important: Two ways to look at “compaction”: 
� A “Library Tool” / programming paradigm 

–  Think in “streams” of data 
– Call kernel on streams, perform compaction of streams, etc. 

� A feature of the programming language 
–  Think in “blocks” and “warps” of “threads” 
– Compaction is “language primitive” that (re)groups threads into 

warps 
–  Like __syncThreads, but w/ change of threadàwarp mapping 
à“__compactThreads()” ??? 
–  But: not the focus of this paper…. 
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ATC for GPU Path Tracing 
Focus/Motivation 

– NOT primarily “making path tracing fast/nice on GPUs” 
– Rather: Test case to evaluate ATC concept 

–  Ideal test-case: Lots of divergence, huge potential for savings… 
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Experimental Infrastructure 
CUDA ray tracing core 

– Binary BVH w/ SAH, but no spatial splits 
– Aila-”like” traversal, but simplified (eg, no use of texture mem) 
–  Important: call traversal core directly from within path tracer 

–  Ie, not as stand-along kernel operating on set of nicely sorted array of 
rays 

– Can’t match the numbers in the Aila-paper, but “reasonably” fast… 
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Experimental Infrastructure 
CUDA ray tracing core 
Intentionally simple CUDA Path Tracer 

Infrastructure 
– Padded replication sampling (Scrambled Hammersley pattern) 
–  “Uber”-Material that switches between several Material types  
– Simple path tracer: Generate initial path, then iterate: 

–  Trace path to next hitpoint, terminate if none found. 
–  Sample light source, terminate if invalid sample 
–  Shoot shadow ray, evaluate BRDF and accumulate “light” if illuminate 
–  Compute outgoing ray by sampling BRDF; terminate if absorbed (RR) 



Slide 12 High-Performance Graphics 2011, Vancouver, CA 

Experimental Infrastructure 
CUDA ray tracing core 
Intentionally simple CUDA Path Tracer 

Infrastructure 
Three different kernels 

–  “Naïve”, “whole-frame”, and “tiled” 



Slide 13 High-Performance Graphics 2011, Vancouver, CA 

1) Naïve Reference Kernel 
Reference kernel: Naïve CUDA implementation 

– Each pixel is one path; each path is one CUDA thread 
– Each thread does whole traversal loop until terminated 

Pro: 
–  That’s how you want to write a path tracer 

Con: 
– SIMD divergence 
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2) “Whole Frame Compaction”  
Not actually a “kernel”, rather entire framework 

– CUDA kernel itself does only one 
“bounce” (traceàilluminateàsample) 
–  Reads path node from dedicated array, performs bounce, writes back 

result (marks terminated paths in separate, dedicated “pathActive” 
array ) 

– Outer “for all bounces” loop done by app 
– Compaction: Host calls compaction primitive in-between two 

bounces 
–  Use CUDPP library [Harris et al] 
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2) “Whole Frame Compaction”  
Pro  

–  In theory, should make (most) warps fully occupied 
– Still divergence inside bounce kernel, but fully occupied at each call 

Con  
–  That’s not how you want to code  
–  Lots of possible sources of overhead 

–  Multiple memory read/writes per node; coherence/locality; … 
–  Explicit dependencies between host- and device-codes 
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3) “Tile-based Compaction”  
Compaction, but only inside each screen tile 

(àblock) 
– Still iterate “readàbounceàwrite” … 
– … but all control flow on device (outer loop in same kernel) 
– All arrays are local arrays, no need for app to alloc arrays, call 

kernels,… 

Pro: 
– Much nicer programming model 

–  In particular: Could do that transparently from within a compiler 
– Better locality, no host-device dependencies 
– Can use shared rather than global memory for reordering(!) 
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Experimental results 
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Experimental results 
Various artificial test scenes (170k – 2.6m tris) 

– All “open”, all “diffuse only”, 8 bounces, russian-roulette@5% 
– Screen res 1280x728, 1 path per pixel per frame (w/ accumulation) 

Fairy (174k) 

Moto (519k) Refinery (297k) TrollTemple (622k) 

DragonTemple (922k) DreamHome (2.63 M) 
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Experimental results 
Various artificial test scenes (170k – 2.6m tris) 

– All “open”, all “diffuse only”, 8 bounces, russian-roulette@5% 
– Screen res 1280x728, 1 path per pixel per frame (w/ accumulation) 

 
Hardware: GTX480, hand-tuned parameters 

– Registers per thread = 64 (everything else is worse) 
– Num threads per block = 64 (8x8 for naïve, 64x1 for others) 
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Experimental results 
Speedups: Generally “underwhelming” 

– At best 12-16 percent speedup (rather than 3x!) 
–  Tiled/shared mem actually 3x slower 
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Now why is it so slow? 
“Maybe” it’s a bug? Or flawed assumptions? 
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Now why is it so slow? 
In part: 3x slower for tiled SHM kernel? 

–  3x slower for kernel we thought best ??? 
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Now why is it so slow? 
In part: 3x slower for tiled SHM kernel? 

–  3x slower for kernel we thought best ??? 

Explanation: Look at “CUDA Occupancy Calculator” 
–  In particular, plot “occupancy over SHM usage” 

–  Constraint: 64 registers per thread (best perf. config) 

à At best 16% occupancy  
(32% dev util) 
à @24K/thread block:  
~4% occupancy (8% util) 

à Using ~24KB SHM makes us lose 
4x in device utilization! 
(can’t make that up w/ compaction) 
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CUDA Device Occupancy 
Interesting: SHM-util. issue NOT specific to our app 

 

Occupancy explains the 3x slowdown for SHM 
kernel 
–  4x loss in device utilization is hard to make up for 

But why is the (non-SHM) whole-frame kernel so 
slow? 
– Bug? Flawed assumption? 

 



Slide 25 High-Performance Graphics 2011, Vancouver, CA 

Now why is it so slow? 
“Maybe” it’s a bug? Or flawed assumptions? 

–  To find out, look at execution statistics: 

àIn fact, fully in line with expectations… (2.3x fewer warp-bounces) 
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Now why is it so slow? 
So it works in theory… but why not in practice !? 

 

Overhead for doing compaction? 
– No: checked cost(compaction), is ~ 1% 
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Now why is it so slow? 
So it works in theory… but why not in practice !? 

 

Overhead for doing compaction? 
– No: checked cost(compaction), is ~ 1% 

Overhead for storing/loading paths? 
– No: checked naïve vs whole-frame w/o compaction 
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Now why is it so slow? 
So it works in theory… but why not in practice !? 

 

Overhead for doing compaction? 
– No: checked cost(compaction), is ~ 1% 

Overhead for storing/loading paths? 
– No: checked naïve vs whole-frame w/o compaction 

Too few rays available for compaction to work? 
– No – ran both 1920x1280 and 1280x768; no difference at all 



Slide 29 High-Performance Graphics 2011, Vancouver, CA 

Time per warp-bounce 
“warp bounce”: one warp doing one “bounce” kernel 

(traceàilluminateàshadowàsampleBRDF) 

Look at “time/warp-bounce”, wrt path depth: 
 
 

 

à No compaction: Low-utilized warps get faster 
à W/ compaction: Time/warpbounce increases significantly 
à Improving utilization increases cost per kernel call (@same #insts) 
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Time per warp-bounce 
Full warps more exp. than 1-thread warps? 

–  (in theory, they shouldn’t be – at least, not that bad) 

Explanation 1: Code divergence  
– More rays in warp à higher prob that rays’ code path diverges 
– More rays in warp à higher prob that one of them is extra expensive 

– Both true, but neither fully conclusive… 
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Time per warp-bounce 
Explanation 2: Memory 

–  Fact: we have barely enough threads to occupy device at all… 
–  64 threads/block à two warps per block 
–  Certainly not enough to hide O(1000’s) cycles in latency 

– Device has to serialize incoherent reads à latencies add up 
–  read of 32 incoherent addresses much more costly than 1 or 2. 
à Increasing #threads/warp increases cost/warp 

In practice, probably a combination of ‘1’ and ‘2’ 
– SIMD divergence and (incoherent) memory accesses 
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Summary 
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Summary 
Proposed concept of “active thread compaction” 

– Eventual vision requires language/compiler support 
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Summary 
Proposed concept of “active thread compaction” 

– Eventual vision requires language/compiler support 

Shown significant statistical wins (at least for PT) 
– Reduction in core kernel calls: more than 2x!  
– But, grain of salt: avg is “only” 2.3x, not “10x” 
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Summary 
Proposed concept of “active thread compaction” 

– Eventual vision requires language/compiler support 

Shown significant statistical wins (at least for PT) 
– Reduction in core kernel calls: more than 2x!  
– But, grain of salt: avg is “only” 2.3x, not “10x” 

Shown that on today’s HW it doesn’t yet work well 
–  “Complex” kernels have too few threads running to hide latencies 
–  Low occupancy when using local store 

–  (Re-)investigate for other/next-gen HW archs (?) 



Slide 36 High-Performance Graphics 2011, Vancouver, CA 

Summary 
Proposed concept of “active thread compaction” 

– Eventual vision requires language/compiler support 

Shown significant statistical wins (at least for PT) 
– Reduction in core kernel calls: more than 2x!  
– But, grain of salt: avg is “only” 2.3x, not “10x” 

Shown that on today’s HW it doesn’t yet work well 
–  “Complex” kernels have too few threads running to hide latencies 
–  Low occupancy when using local store 

–  (Re-)investigate for other/next-gen HW archs (?) 

Today’s HW not at all sufficiently understood 
–  In part, ray traversal by far not as “coherence-oblivious” as thought 

–  Even for “simple” settings (single mesh, triangles only, …) 
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Questions 
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backup… 
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ATC for GPU Path Tracing 
Focus/Motivation 

– NOT primarily “making path tracing fast/nice on GPUs” 
– Rather: Test case to evaluate ATC concept 

–  Well-understood application, well-understood building blocks (ray 
traversal) 

–  Code you want to code in scalar form 
–  Highly variable work/thread; random – and frequent – “dying” of threads 

à Huge potential for ACT to give tangible benefit. 
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Other factors 
Switch to speculative traversal kernel 

– Bigger relative speedup, but even more mem I/Oà lower absolute 
perf 

Artificially more compute (shade, isec) 
– Yes, get bigger speedup … but no “useful” application 

Ambient Light vs HDRI Light 
– No big difference: HDRI light far more expensive … 

… but also completely latency-bound 

Impact of geometry type and material types 
– General rule: The less incoherence, the lower the benefit of 

compaction 
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Now why is it so slow? 
In part: 3x slower for tiled SHM kernel? 

–  3x slower for kernel we thought best ??? 

Explanation: Look at “CUDA Occupancy Calculator” 
–  In particular, plot “occupancy over SHM usage” 

–  Constraint: 64 registers per thread (best perf. config) 

à At best 16% occupancy  
(32% dev util) 
à @24K/thread block:  
~4% occupancy (8% util) 

(64 threads x 4 paths/thread 
x 88 bytes/path = 22.5Kb) 
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Dealing with reduced utilization 
Speculative execution (eg, [Aila et al]) 
“Re-fill” early-terminated threads [Novak et al] 
Switch to other way of using SIMD 

–  “Horizontal” vs “vertical” SIMD [Kalojanov, Ernst, Wald, Waechter, 
… 

Use some form of compaction-based traversal 
– SIMD Stream tracing [Gribble,Wald,Tsakok]; packet reordering 

[Boulos] 
– Stream compaction [von Antwerpen] 

(this list is incomplete) 
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Active Thread Compaction 
Example: Start w/ block of 4 warps, 4 threads each (all active) 

 4 active warps, 16 useful ops 
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Active Thread Compaction 
Example: Start w/ block of 4 warps, 4 threads each (all active) 

 4 active warps, 16 useful ops 

 4 active warps, only 9 useful ops (56%) 

Bounce(path) /* 1st gen */ 
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Active Thread Compaction 
Example: Start w/ block of 4 warps, 4 threads each (all active) 

 4 active warps, 16 useful ops 

 4 active warps, only 9 useful ops (56%) 

 4 active warps, only 5 useful ops (31%) 

Buonce(path) /* 2nd gen */ 

Bounce(path) /* 1st gen */ 
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Active Thread Compaction 
Example: Start w/ block of 4 warps, 4 threads each (all active) 

Bounce(path) /* 1st gen */ 

 4 active warps, 16 useful ops 

 4 active warps, only 9 useful ops (56%) 
Buonce(path) /* 2nd gen */ 

 4 active warps, only 5 useful ops (31%) 

… 

 3(!) active warps, only 3 useful ops (25%) 
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Active Thread Compaction 

 3(!) active warps, only 3 useful ops (25%) 
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Active Thread Compaction 

Active thread compaction 

 1 active warps, 3 useful ops (75%) 

 3(!) active warps, only 3 useful ops (25%) 

Same actual work done by 1 warp (rather than 3)  3x win! 
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ATC for GPU Path Tracing 
Stop here: Just how big is this potential? 

– Assume 8 bounces 
– Assume 50% chance of path “dying” (lost to env, RR-absorption) 

–  To maximize this, pick “open” scenes. 
–  Then:  After 5 bounces we’re down to “1 out of 32” active threads 
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ATC for GPU Path Tracing 
Stop here: Just how big is this potential? 

– Assume 8 bounces 
– Assume 50% chance of path “dying” (lost to env, RR-absorption) 

–  To maximize this, pick “open” scenes. 
–  Then:  After 5 bounces we’re down to “1 out of 32” active threads 

That’s too naïve – in practice, win isn’t all that big…. 
–  1st generation (primary rays) is 100% utilized à 32/32 
–  2nd generation (1st bounce) is ~100% utilized à 32/32 

–  Primary bounce points are coherent – all miss, or all hit 
–  3rd generation is ~50% utilized (16/32) 
– … 
– Average across 9 generations (8 bounces) is ~10.6/32 à 3x benefit 


