
High-Performance Graphics 2011, Vancouver, CA

Ingo Wald
Ingo.Wald@intel.com

Active Thread Compaction
for

GPU Path Tracing

Slide 2 High-Performance Graphics 2011, Vancouver, CA

Outline
Active Thread Compaction

–  The concept
– A “proof of concept” implementation (for Path Tracing)
– Experimental Results

Analysis
– Or: “Why the heck does it still not getting faster?”

Slide 3 High-Performance Graphics 2011, Vancouver, CA

Motivation
Modern archs increasingly rely on SIMD for perf

– CUDA/Fermi: 32 “threads” in a SIMD “warp”

Compilers/languages help avoid “ugliness” of
SIMD…
– OpenCL, CUDA, shading languages … give appearance of “scalar”

code

… but HW is still SIMD
–  If one thread wants to do an op, entire warp does it
– Code divergence à HW execute both paths, each w/ predication
–  Lots of divergence: potentially running at utilization of 1/32nd

Slide 4 High-Performance Graphics 2011, Vancouver, CA

SIMD divergence very much real
Ray Traversal

– Currently traversed node: inner node vs leaf node
–  … and leaves can have vastly different lengths
–  And what if we support more than just triangles?

– Varying number of traversal steps until completion
– …

Path tracing itself
–  Traversal found intersection or not
– Different material type, absorption or bounce
– Valid light sample?
–  In Shadow?
– …

Slide 5 High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction

Slide 6 High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction
Basic Idea: If cost/warp is indep of #active threads…

–  (that’s the basic assumption of SIMD)

… and if we have lots of low-utilized warps …
… then “merging” low-utilized warps should save

work
– Eg, take 10 warps of 3 paths each; make 1 warp of 30 paths à10x

win

Conceptually simple to implement

– Write all (logical) thread states into array
– Perform stream compaction
– Read “thread” state back (into other HW thread)

Slide 7 High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction
Important: Two ways to look at “compaction”:
� A “Library Tool” / programming paradigm

–  Think in “streams” of data
– Call kernel on streams, perform compaction of streams, etc.

Slide 8 High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction
Important: Two ways to look at “compaction”:
� A “Library Tool” / programming paradigm

–  Think in “streams” of data
– Call kernel on streams, perform compaction of streams, etc.

� A feature of the programming language
–  Think in “blocks” and “warps” of “threads”
– Compaction is “language primitive” that (re)groups threads into

warps
–  Like __syncThreads, but w/ change of threadàwarp mapping
à“__compactThreads()” ???
–  But: not the focus of this paper….

Slide 9 High-Performance Graphics 2011, Vancouver, CA

ATC for GPU Path Tracing
Focus/Motivation

– NOT primarily “making path tracing fast/nice on GPUs”
– Rather: Test case to evaluate ATC concept

–  Ideal test-case: Lots of divergence, huge potential for savings…

Slide 10 High-Performance Graphics 2011, Vancouver, CA

Experimental Infrastructure
CUDA ray tracing core

– Binary BVH w/ SAH, but no spatial splits
– Aila-”like” traversal, but simplified (eg, no use of texture mem)
–  Important: call traversal core directly from within path tracer

–  Ie, not as stand-along kernel operating on set of nicely sorted array of
rays

– Can’t match the numbers in the Aila-paper, but “reasonably” fast…

Slide 11 High-Performance Graphics 2011, Vancouver, CA

Experimental Infrastructure
CUDA ray tracing core
Intentionally simple CUDA Path Tracer

Infrastructure
– Padded replication sampling (Scrambled Hammersley pattern)
–  “Uber”-Material that switches between several Material types
– Simple path tracer: Generate initial path, then iterate:

–  Trace path to next hitpoint, terminate if none found.
–  Sample light source, terminate if invalid sample
–  Shoot shadow ray, evaluate BRDF and accumulate “light” if illuminate
–  Compute outgoing ray by sampling BRDF; terminate if absorbed (RR)

Slide 12 High-Performance Graphics 2011, Vancouver, CA

Experimental Infrastructure
CUDA ray tracing core
Intentionally simple CUDA Path Tracer

Infrastructure
Three different kernels

–  “Naïve”, “whole-frame”, and “tiled”

Slide 13 High-Performance Graphics 2011, Vancouver, CA

1) Naïve Reference Kernel
Reference kernel: Naïve CUDA implementation

– Each pixel is one path; each path is one CUDA thread
– Each thread does whole traversal loop until terminated

Pro:
–  That’s how you want to write a path tracer

Con:
– SIMD divergence

Slide 14 High-Performance Graphics 2011, Vancouver, CA

2) “Whole Frame Compaction”
Not actually a “kernel”, rather entire framework

– CUDA kernel itself does only one
“bounce” (traceàilluminateàsample)
–  Reads path node from dedicated array, performs bounce, writes back

result (marks terminated paths in separate, dedicated “pathActive”
array)

– Outer “for all bounces” loop done by app
– Compaction: Host calls compaction primitive in-between two

bounces
–  Use CUDPP library [Harris et al]

Slide 15 High-Performance Graphics 2011, Vancouver, CA

2) “Whole Frame Compaction”
Pro

–  In theory, should make (most) warps fully occupied
– Still divergence inside bounce kernel, but fully occupied at each call

Con
–  That’s not how you want to code
–  Lots of possible sources of overhead

–  Multiple memory read/writes per node; coherence/locality; …
–  Explicit dependencies between host- and device-codes

Slide 16 High-Performance Graphics 2011, Vancouver, CA

3) “Tile-based Compaction”
Compaction, but only inside each screen tile

(àblock)
– Still iterate “readàbounceàwrite” …
– … but all control flow on device (outer loop in same kernel)
– All arrays are local arrays, no need for app to alloc arrays, call

kernels,…

Pro:
– Much nicer programming model

–  In particular: Could do that transparently from within a compiler
– Better locality, no host-device dependencies
– Can use shared rather than global memory for reordering(!)

Slide 17 High-Performance Graphics 2011, Vancouver, CA

Experimental results

Slide 18 High-Performance Graphics 2011, Vancouver, CA

Experimental results
Various artificial test scenes (170k – 2.6m tris)

– All “open”, all “diffuse only”, 8 bounces, russian-roulette@5%
– Screen res 1280x728, 1 path per pixel per frame (w/ accumulation)

Fairy (174k)

Moto (519k) Refinery (297k) TrollTemple (622k)

DragonTemple (922k) DreamHome (2.63 M)

Slide 19 High-Performance Graphics 2011, Vancouver, CA

Experimental results
Various artificial test scenes (170k – 2.6m tris)

– All “open”, all “diffuse only”, 8 bounces, russian-roulette@5%
– Screen res 1280x728, 1 path per pixel per frame (w/ accumulation)

Hardware: GTX480, hand-tuned parameters

– Registers per thread = 64 (everything else is worse)
– Num threads per block = 64 (8x8 for naïve, 64x1 for others)

Slide 20 High-Performance Graphics 2011, Vancouver, CA

Experimental results
Speedups: Generally “underwhelming”

– At best 12-16 percent speedup (rather than 3x!)
–  Tiled/shared mem actually 3x slower

Slide 21 High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?
“Maybe” it’s a bug? Or flawed assumptions?

Slide 22 High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?
In part: 3x slower for tiled SHM kernel?

–  3x slower for kernel we thought best ???

Slide 23 High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?
In part: 3x slower for tiled SHM kernel?

–  3x slower for kernel we thought best ???

Explanation: Look at “CUDA Occupancy Calculator”
–  In particular, plot “occupancy over SHM usage”

–  Constraint: 64 registers per thread (best perf. config)

à At best 16% occupancy
(32% dev util)
à @24K/thread block:
~4% occupancy (8% util)

à Using ~24KB SHM makes us lose
4x in device utilization!
(can’t make that up w/ compaction)

Slide 24 High-Performance Graphics 2011, Vancouver, CA

CUDA Device Occupancy
Interesting: SHM-util. issue NOT specific to our app

Occupancy explains the 3x slowdown for SHM
kernel
–  4x loss in device utilization is hard to make up for

But why is the (non-SHM) whole-frame kernel so
slow?
– Bug? Flawed assumption?

Slide 25 High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?
“Maybe” it’s a bug? Or flawed assumptions?

–  To find out, look at execution statistics:

àIn fact, fully in line with expectations… (2.3x fewer warp-bounces)

Slide 26 High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?
So it works in theory… but why not in practice !?

Overhead for doing compaction?
– No: checked cost(compaction), is ~ 1%

Slide 27 High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?
So it works in theory… but why not in practice !?

Overhead for doing compaction?
– No: checked cost(compaction), is ~ 1%

Overhead for storing/loading paths?
– No: checked naïve vs whole-frame w/o compaction

Slide 28 High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?
So it works in theory… but why not in practice !?

Overhead for doing compaction?
– No: checked cost(compaction), is ~ 1%

Overhead for storing/loading paths?
– No: checked naïve vs whole-frame w/o compaction

Too few rays available for compaction to work?
– No – ran both 1920x1280 and 1280x768; no difference at all

Slide 29 High-Performance Graphics 2011, Vancouver, CA

Time per warp-bounce
“warp bounce”: one warp doing one “bounce” kernel

(traceàilluminateàshadowàsampleBRDF)

Look at “time/warp-bounce”, wrt path depth:

à No compaction: Low-utilized warps get faster
à W/ compaction: Time/warpbounce increases significantly
à Improving utilization increases cost per kernel call (@same #insts)

Slide 30 High-Performance Graphics 2011, Vancouver, CA

Time per warp-bounce
Full warps more exp. than 1-thread warps?

–  (in theory, they shouldn’t be – at least, not that bad)

Explanation 1: Code divergence
– More rays in warp à higher prob that rays’ code path diverges
– More rays in warp à higher prob that one of them is extra expensive

– Both true, but neither fully conclusive…

Slide 31 High-Performance Graphics 2011, Vancouver, CA

Time per warp-bounce
Explanation 2: Memory

–  Fact: we have barely enough threads to occupy device at all…
–  64 threads/block à two warps per block
–  Certainly not enough to hide O(1000’s) cycles in latency

– Device has to serialize incoherent reads à latencies add up
–  read of 32 incoherent addresses much more costly than 1 or 2.
à Increasing #threads/warp increases cost/warp

In practice, probably a combination of ‘1’ and ‘2’
– SIMD divergence and (incoherent) memory accesses

Slide 32 High-Performance Graphics 2011, Vancouver, CA

Summary

Slide 33 High-Performance Graphics 2011, Vancouver, CA

Summary
Proposed concept of “active thread compaction”

– Eventual vision requires language/compiler support

Slide 34 High-Performance Graphics 2011, Vancouver, CA

Summary
Proposed concept of “active thread compaction”

– Eventual vision requires language/compiler support

Shown significant statistical wins (at least for PT)
– Reduction in core kernel calls: more than 2x!
– But, grain of salt: avg is “only” 2.3x, not “10x”

Slide 35 High-Performance Graphics 2011, Vancouver, CA

Summary
Proposed concept of “active thread compaction”

– Eventual vision requires language/compiler support

Shown significant statistical wins (at least for PT)
– Reduction in core kernel calls: more than 2x!
– But, grain of salt: avg is “only” 2.3x, not “10x”

Shown that on today’s HW it doesn’t yet work well
–  “Complex” kernels have too few threads running to hide latencies
–  Low occupancy when using local store

–  (Re-)investigate for other/next-gen HW archs (?)

Slide 36 High-Performance Graphics 2011, Vancouver, CA

Summary
Proposed concept of “active thread compaction”

– Eventual vision requires language/compiler support

Shown significant statistical wins (at least for PT)
– Reduction in core kernel calls: more than 2x!
– But, grain of salt: avg is “only” 2.3x, not “10x”

Shown that on today’s HW it doesn’t yet work well
–  “Complex” kernels have too few threads running to hide latencies
–  Low occupancy when using local store

–  (Re-)investigate for other/next-gen HW archs (?)

Today’s HW not at all sufficiently understood
–  In part, ray traversal by far not as “coherence-oblivious” as thought

–  Even for “simple” settings (single mesh, triangles only, …)

Slide 37 High-Performance Graphics 2011, Vancouver, CA

Questions

High-Performance Graphics 2011, Vancouver, CA

backup…

Slide 39 High-Performance Graphics 2011, Vancouver, CA

ATC for GPU Path Tracing
Focus/Motivation

– NOT primarily “making path tracing fast/nice on GPUs”
– Rather: Test case to evaluate ATC concept

–  Well-understood application, well-understood building blocks (ray
traversal)

–  Code you want to code in scalar form
–  Highly variable work/thread; random – and frequent – “dying” of threads

à Huge potential for ACT to give tangible benefit.

Slide 40 High-Performance Graphics 2011, Vancouver, CA

Other factors
Switch to speculative traversal kernel

– Bigger relative speedup, but even more mem I/Oà lower absolute
perf

Artificially more compute (shade, isec)
– Yes, get bigger speedup … but no “useful” application

Ambient Light vs HDRI Light
– No big difference: HDRI light far more expensive …

… but also completely latency-bound

Impact of geometry type and material types
– General rule: The less incoherence, the lower the benefit of

compaction

Slide 41 High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?
In part: 3x slower for tiled SHM kernel?

–  3x slower for kernel we thought best ???

Explanation: Look at “CUDA Occupancy Calculator”
–  In particular, plot “occupancy over SHM usage”

–  Constraint: 64 registers per thread (best perf. config)

à At best 16% occupancy
(32% dev util)
à @24K/thread block:
~4% occupancy (8% util)

(64 threads x 4 paths/thread
x 88 bytes/path = 22.5Kb)

Slide 42 High-Performance Graphics 2011, Vancouver, CA

Dealing with reduced utilization
Speculative execution (eg, [Aila et al])
“Re-fill” early-terminated threads [Novak et al]
Switch to other way of using SIMD

–  “Horizontal” vs “vertical” SIMD [Kalojanov, Ernst, Wald, Waechter,
…

Use some form of compaction-based traversal
– SIMD Stream tracing [Gribble,Wald,Tsakok]; packet reordering

[Boulos]
– Stream compaction [von Antwerpen]

(this list is incomplete)

Slide 43 High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction
Example: Start w/ block of 4 warps, 4 threads each (all active)

 4 active warps, 16 useful ops

Slide 44 High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction
Example: Start w/ block of 4 warps, 4 threads each (all active)

 4 active warps, 16 useful ops

 4 active warps, only 9 useful ops (56%)

Bounce(path) /* 1st gen */

Slide 45 High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction
Example: Start w/ block of 4 warps, 4 threads each (all active)

 4 active warps, 16 useful ops

 4 active warps, only 9 useful ops (56%)

 4 active warps, only 5 useful ops (31%)

Buonce(path) /* 2nd gen */

Bounce(path) /* 1st gen */

Slide 46 High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction
Example: Start w/ block of 4 warps, 4 threads each (all active)

Bounce(path) /* 1st gen */

 4 active warps, 16 useful ops

 4 active warps, only 9 useful ops (56%)
Buonce(path) /* 2nd gen */

 4 active warps, only 5 useful ops (31%)

…

 3(!) active warps, only 3 useful ops (25%)

Slide 47 High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction

 3(!) active warps, only 3 useful ops (25%)

Slide 48 High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction

Active thread compaction

 1 active warps, 3 useful ops (75%)

 3(!) active warps, only 3 useful ops (25%)

Same actual work done by 1 warp (rather than 3)  3x win!

Slide 49 High-Performance Graphics 2011, Vancouver, CA

ATC for GPU Path Tracing
Stop here: Just how big is this potential?

– Assume 8 bounces
– Assume 50% chance of path “dying” (lost to env, RR-absorption)

–  To maximize this, pick “open” scenes.
–  Then: After 5 bounces we’re down to “1 out of 32” active threads

Slide 50 High-Performance Graphics 2011, Vancouver, CA

ATC for GPU Path Tracing
Stop here: Just how big is this potential?

– Assume 8 bounces
– Assume 50% chance of path “dying” (lost to env, RR-absorption)

–  To maximize this, pick “open” scenes.
–  Then: After 5 bounces we’re down to “1 out of 32” active threads

That’s too naïve – in practice, win isn’t all that big….
–  1st generation (primary rays) is 100% utilized à 32/32
–  2nd generation (1st bounce) is ~100% utilized à 32/32

–  Primary bounce points are coherent – all miss, or all hit
–  3rd generation is ~50% utilized (16/32)
– …
– Average across 9 generations (8 bounces) is ~10.6/32 à 3x benefit

