Actlve Thread Compaction
R ~ for

ngo vvaia
Ingo.Wald@intel.com

Outline

Active Thread Compaction
— The concept
— A “proof of concept” implementation (for Path Tracing)
— Experimental Results

. s in : [
» e <
*
AnaIyS|S > - B SR G B B
- —— 4 - 4 = - —.] — -— & hof
.l — = % ’I e - - ‘._."‘: a

Motivation

Modern archs increasingly rely on SIMD for pert
— CUDA/Fermi: 32 “threads” in a SIMD “warp”

Compilers/languages help avoid “ugliness” of
SIMD..

— OpenCL CUDA shadlng languages ... give appearance of “scalar”
code - w5

1S Si
— Il ON€E tnreaa wanis {6 do an op, entire warp does It

Code divergence = HVV execute botn patns, each W/ predication

— Lots of divergence: potentially running at u leJ_/:.J.JJIJ of 1/32"¢

Slide 3 High-Performance Graphics 2011, Vancouver, CA

SIMD divergence very much real

Ray Traversal

— Currently traversed node: inner node vs leaf node
.. and leaves can have vastly different lengths
— And what if we support more than just triangles?

— Varying number of traversal steps until completion

— [raversal found intersection or not
— Diiterent material type, ansorpton

— Valid light sample?
— In Shadoew?

Slide 4 High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction

Active Thread Compaction

Basic |ldea: If cost/warp is indep of #active threads...
— (that’s the basic assumption of SIMD)

... and if we have lots of low-utilized warps ...

... then "merging” low-utilized warps should save
WOrk = >_ &= '

. e _ .n> ... e c -
- R . a - — W1 A Ly ~_ —
— Eg, take 10 warps of 3 paths each; make 1 warp of 30 paths 210

g

win

-

Conceptually' simple to implement
— Writetall(logical) thread states into array
— Perform stream compaction

o Pead tinesadtst e o g gtor ply gl)

Active Thread Compaction

Important. Two ways to look at “"compaction”:

* A “Library Tool” / programming paradigm
— Think in “streams” of data
— Call kernel on streams, perform compaction of streams, etc.

High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction

Important: Two ways to look at “compaction”:

e A “Library Tool” / programming paradigm
— Think in “streams” of data
— Call kernel on streams, perform compaction of streams, etc.

e A feature of the programming language

— Think in “blocks” and “warps™ of “threads”

— Compaction is “language primitive” that (re)groups threads into
warps

— Like __syncThreads, but w/ change of thread—>warp mapping
- __compactThreads()” 7?77
— But: not the focus of this paper....

Slide 8 High-Performance Graphics 2011, Vancouver, CA

ATC for GPU Path Tracing

Focus/Motivation
— NOT primarily “making path tracing fast/nice on GPUSs”

— Rather: Test case to evaluate ATC concept
— Ideal test-case: Lots of divergence, huge potential for savings...

Experimental Infrastructure

CUDA ray tracing core
— Binary BVH w/ SAH, but no spatial splits
— Aila-"like” traversal, but simplified (eg, no use of texture mem)

— Important: call traversal core directly from within path tracer

— le, not as stand-along kernel operating on set of nicely sorted array of
rays - ' » 2

~ — Can’t match the

th

” fas

numbers in the Aila-paper, but “reasonab

Slide 10 High-Performance Graphics 2011, Vancouver, CA

Experimental Infrastructure

CUDA ray tracing core

Intentionally simple CUDA Path Tracer
Infrastructure

— Padded replication sampling (Scrambled Hammersley pattern)
— “Uber”-Material that switches between several Material types
— Simple path tracer: Generate initial path, then iterate:
— Trace path to next hitpoint, terminate if none found.
— Sample light source, terminate if invalid sample
— Shoot shadow ray, evaluate BRDE and accumulate “light™ if illuminate
— Compute outgoing ray by sampling BRDF; terminate if absorbed (RR)

Slide 11 High-Performance Graphics 2011, Vancouver, CA

Experimental Infrastructure

CUDA ray tracing core

Intentionally simple CUDA Path Tracer
Infrastructure

Three different kernels
-~ Naive, “whole-frame’, and “tied"

1) Naive Reference Kernel

Reference kernel: Naive CUDA implementation
— Each pixel is one path; each path is one CUDA thread
— Each thread does whole traversal loop until terminated

Pro: |
—_That’s_h'ow;you want to write a path tracer

- B . - N

- . . e

(o[} High-Performance Graphics 2011, Vancouver, CA

2) “Whole Frame Compaction”

Not actually a “kernel”, rather entire framework

— CUDA kernel itself does only one
“bounce” (trace—>illuminate->sample)

— Reads path node from dedicated array, performs bounce, writes back
result (marks terminated paths in separate, dedicated “pathActive”
array) _

— Outer "for éii’bounces Ioopdone by app

— Compaction: Host cz JL compaction primit ive:
DOUNCES

— Use CUDFF library [FHarris et al|

Slide 14 High-Performance Graphics 2011, Vancouver, CA

2) “Whole Frame Compaction”

Pro
— In theory, should make (most) warps fully occupied
— Still divergence inside bounce kernel, but fully occupied at each call

Con

— Multiple memory read/wriies per node; conerence/locality; ...

Slide 15 High-Performance Graphics 2011, Vancouver, CA

3) “Tile-based Compaction”

Compaction, but only inside each screen tile
(—=>block)

— Still iterate “read—>bounce—>write”
. but all control flow on device (outer loop in same kernel)

=\l arrays are Iocal arrays, no need for app to alloc arrays, call
kernels 2 .

— IVluch nicer programming model

— In particular: Could do that transparently from within a compiler

Slide 16 High-Performance Graphics 2011, Vancouver, CA

Experimental results

Experimental results

Various artificial test scenes (170k — 2.6m tris)
— All “open”, all “diffuse only”, 8 bounces, russian-roulette@5%
— Screen res 1280x728, 1 path per pixel per frame (w/ accumulation)

L P g : . s ; .:'/ :h
. s - 4 b :
) g B N\ e) ; iy
s, [)) B

= =
- "
5]
’f

x f
o~y .} 4,‘

Refinery (297k) ~ " Moto (519k)

Slide 18 High-Performance Graphics 2011, Vancouver, CA

Experimental results

Various artificial test scenes (170k — 2.6m tris)
— All “open”, all “diffuse only”, 8 bounces, russian-roulette@5%
— Screen res 1280x728, 1 path per pixel per frame (w/ accumulation)

~ Hardware: GTX48O hand-tuned parameters
e Reglste S c__> thread = 64) =
— Num threads per block = 64 (8x6 for naive, 64x1 for others)

everything else is

Slide 19 High-Performance Graphics 2011, Vancouver, CA

Experimental results

Speedups: Generally “underwhelming”
— At best 12-16 percent speedup (rather than 3x!)
— Tiled/shared mem actually 3x slower

naive | whole-frame comp. | tiled (shared mem)

Path Tracing, max. path length=8

fairy
moto
troll

dragon
dreamhome

refinery

Slide 20 High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?

“Maybe” it's a bug? Or flawed assumptions?

Now why is it so slow?

In part: 3x slower for tiled SHM kernel?
— 3x slower for kernel we thought best ??7?

Now why is it so slow?

In part: 3x slower for tiled SHM kernel?
— 3x slower for kernel we thought best ??77?

Explanation: Look at “CUDA Occupancy Calculator”

— In particular, plot “occupancy over SHM usage”
— Constraint: 64 registers per thread (best perf. config)

Varying Shared Memory Usage 9

(32% dev util)

9
(8% util)

—>Using ~24KB SHM makes us lose
4x in device utilization!
Shared Memory Per Block (can’t make that up w/ compaction)

Slide 23 High-Performance Graphics 2011, Vancouver, CA

CUDA Device Occupancy

Interesting: SHM-util. issue NOT specific to our app

Occupancy explains the 3x slowdown for SHM
kernel
— 4x Ioss in dewce utlllzatlon IS hard to make up for

E why s na"rrr~ HM) whole- r’rr‘ ernel so
:)]JW 4
— Bug? Flawead assumption?

Slide 24 High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?

“Maybe” it's a bug? Or flawed assumptions?
— To find out, look at execution statistics:

active naive compact

paths #warps paths/warp saved
983 (983) 30,720 (31k) 32(32) 31k (31k)
983 (1,966) 30,720 (61k) 32 (32) 31k (61k)
528 (2,494) 30,717 (92k) 17 (27) 17k (38Kk)
352 (2,846) || 30,698 (123k) 11 (23) 11k (89k)
225 (3,071) || 30,144 (153k) 7.5(20) 7k (96k)
155 (3,226) || 28,655 (182k) 5.4(17.8) || 4.8k (101k)
108 (3,334) || 26,383 (208k) 4.1(16) 3.4k (104k)
80 (3,414) 23,450 (231k) 3.4(14.7) || 2.5k (107k)
60 (3,474) 16,651 (250k) 3.2 (13.8) 1.9k (108k)

—In fact, fully in line with expectations... (2.3x fewer warp-bounces)

0
|
2
3
4
5

o0 ~J O

Slide 25 High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?

So it works in theory... but why not in practice !?

Overhead for doing compaction?
— No: checkgd cost(compaction), i§ ~1%

Now why is it so slow?

So it works in theory... but why not in practice !?

Overhead for doing compaction?
— No: checked cost(compaction), is ~ 1%

Overhead f@ storing/loading paths?

- . '-—

- I\JJ checked naive vs whole-frame w/o compaction

ide 2/ High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?

So it works in theory... but why not in practice !?

Overhead for doing compaction?
— No: checked cost(compaction), is ~ 1%

Overhead for stormg/loadmg paths’?

_ No: checked naive vs whole-frame w/o - ompacti ol

/o0 few rays avallable ior compaction to work?
— NO — ran botn 1920x1260'and 1260x763; No difference at all

Slide 28 High-Performance Graphics 2011, Vancouver, CA

Time per warp-bounce

“warp bounce”. one warp doing one “bounce” kernel
(trace—2illuminate->shadow->sampleBRDF)

Look at “time/warp-bounce”, wrt path depth:

paths/warp | 32 3 17 11 75 54 41
time/warp .6 R 1.9 14 1.1 : 0.9 08

paths/warp
time/warp

—~>No compaction: Low-utilized warps get faster
S\W/icompaction: Time/warpbounce /ncreases significantly
—Improving utilization increases cost per kernel call (@same #insts)

Slide 29 High-Performance Graphics 2011, Vancouver, CA

Time per warp-bounce

Full warps more exp. than 1-thread warps?
— (in theory, they shouldn’t be — at least, not that bad)

Explanation 1. Code divergence

— More rays in warp = higher prob that rays’ code path diverges
— More 'r_ays.i[-j warp -2 higher prob that one qfi:them IS extra expensive

- . - e - g - S —
o N ™ - - ! &

— Both true, but neither fully conclusive...

Slide 30 High-Performance Graphics 2011, Vancouver, CA

Time per warp-bounce

Explanation 2: Memory

— Fact: we have barely enough threads to occupy device at all...
— 64 threads/block = two warps per block
— Certainly not enough to hide O(1000’s) cycles in latency

— Device has to serialize incoherent reads - latencies add up
— read of 32 mcoherent ‘addresses much more costly than 1 or 2.

ceas reads/warp increases costiwarp s

N practice, provaply a compination or 1= ana 2:

— SIMD divergence and (Inconerent) Memory acCcesses

Slide 31 High-Performance Graphics 2011, Vancouver, CA

Summary

Summary

Proposed concept of “active thread compaction”
— Eventual vision requires language/compiler support

Summary

Proposed concept of “active thread compaction”
— Eventual vision requires language/compiler support

Shown significant statistical wins (at least for PT)

— Reduction in core kernel calls: more than 2x!
— But, grain of salt: avg is “only” 2.3x, not *10x™

D

~— - - o

High-Performance Graphics 2011, Vancouver, CA

Summary

Proposed concept of “active thread compaction”
— Eventual vision requires language/compiler support

Shown significant statistical wins (at least for PT)

— Reduction in core kernel calls: more than 2x!
— But, grain of salt: avg is “only” 2.3x, not “10x”

J

Shown that\on today’ S—HW it doesn't yet work well
— Comp ,)J-»s” :ﬁ-»rn-)L, have too few threads r.mrun o nLJ LJ [encies
— LOw occupancy wnen using local store
— (Re-)investigate 1or other/nexi-gen HVV-archs (7)

Slide 35 High-Performance Graphics 2011, Vancouver, CA

Summary

Proposed concept of “active thread compaction”
— Eventual vision requires language/compiler support

Shown significant statistical wins (at least for PT)

— Reduction in core kernel calls: more than 2x!
— But, grain of salt: avg is “only” 2.3x, not “10x”

Shown that on today's HW it doesn’t yet work well
— “Complex” kernels have too few threads running to hide latencies

— Low occupancy when using local store
— (Re-)investigate for other/next-gen HW archs (?)

Today's HW not at all sufficiently understood

— In part; ray traversal by far not as “coherence-oblivious” as thought
— Even for “simple” settings (single mesh, triangles only, ...)

Slide 36 High-Performance Graphics 2011, Vancouver, CA

Questions

ATC for GPU Path Tracing

Focus/Motivation
— NOT primarily “making path tracing fast/nice on GPUs”

— Rather: Test case to evaluate ATC concept

— Well-understood application, well-understood building blocks (ray
traversal)

~ — Code yoU want to code in scalar form
- — Highly variable work/thread; random — andfue 1t — “dying ofthreads
—~ Huge potential tor AC I to give tangible benefit.

Slide 39 High-Performance Graphics 2011, Vancouver, CA

Other factors

Switch to speculative traversal kernel

— Bigger relative speedup, but even more mem I/O-> lower absolute
perf

Artificially more compute (shade, isec)
— Yes, get bigger speedup ... but no “useful” application

Ambient Light vs HDRI Light

— No big difference: HDRI light far more expensive ...
... but also completely latency-bound

Impact of geometry type and material types

— General rule: The less incoherence, the lower the benefit of
compaction

Slide 40 High-Performance Graphics 2011, Vancouver, CA

Now why is it so slow?

In part: 3x slower for tiled SHM kernel?
— 3x slower for kernel we thought best ??7?

Explanation: Look at “CUDA Occupancy Calculator”

— In particular, plot “occupancy over SHM usage”
— Constraint: 64 registers per thread (best perf. config)

Varying Shared Memory Usage Varying Shared Memory Usage

£ (&)}

Shared Memory Per Block Paths per thread (M)

Slide 41 High-Performance Graphics 2011, Vancouver, CA

Dealing with reduced utilization

Speculative execution (eg, [Aila et al])
“Re-fill” early-terminated threads [Novak et al]
Switch to other way of using SIMD

— “Horizontal” vs “vertical” SIMD [Kalojanov, Ernst, Wald, Waechter,

Use some form of compaction-based traversal

— SIMD Stream tracing [Gribble,Wald, Tsakok]; packet reordering
[Boulos]

— Stream compaction [von Antwerpen]

(this listiistincomplete)

Slide 42 High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction

Example: Start w/ block of 4 warps, 4 threads each (all active)

- 4 active warps, 16 useful ops

Active Thread Compaction

Example: Start w/ block of 4 warps, 4 threads each (all active)

- 4 active warps, 16 useful ops

Bounce(path) /* 15t gen */

-'_.C_-,;.QOCOJLOQQQ 0000

4 active warps, only 9 useful of 6%) 2

Active Thread Compaction

Example: Start w/ block of 4 warps, 4 threads each (all active)

- 4 active warps, 16 useful ops

Bounce(path) /* 15t gen */

F
’ e
=
LI : .
- L4 S
- - R e
. -
o LAY .
-

-\“4
- C

-

High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction

Example: Start w/ block of 4 warps, 4 threads each (all active)

Bounce(path) /* 1st gen */

- 4 active warps, 16 useful ops

. . ..\‘-.
- LS
~ =
- .
- -

9 4 actlve warps ,only 9 useful ops (56%) -

2> 3(!)_active warps, only 3 useful ops

High-Performance Graphics 2011, Vancouver, CA

Active Thread Compaction

- 3(!) active warps, only 3 useful ops (25%)

Active Thread Compaction
00009 00000000000

ops (25%)

.
.

arps, on

.

.
.

IVE

O
.

(1) act

.
.

>3

D

D
.
.
Y
.
.
.
.

tion

ompac

ATC for GPU Path Tracing

Stop here: Just how big is this potential?
— Assume 8 bounces

— Assume 50% chance of path “dying” (lost to env, RR-absorption)
— To maximize this, pick “open” scenes.

— Then: After 5 bounces we’re down to “1 out of 32" active threads

o - - [— . P

0 High-Performance Graphics 2011, Vancouver, CA

ATC for GPU Path Tracing

Stop here: Just how big is this potential?
— Assume 8 bounces

— Assume 50% chance of path “dying” (lost to env, RR-absorption)
— To maximize this, pick “open” scenes.

— Then: After 5 bounces we’re down to “1 out of 32” active threads

That's too naive — in practice, win isn’t all that big....
— 18t generation (primary rays) is 100% utilized > 32/32

— 2hd generation (15t bounce) is ~100% utilized - 32/32
— Primary bounce points are coherent — all miss, or all hit

— 31 generation is ~50% utilized (16/32)

— Average across 9 generations (8 bounces) is ~10.6/32 - 3x benefit

Slide 50 High-Performance Graphics 2011, Vancouver, CA

