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Introduction

Well-Distributed Point Sets

Uniform

Avg. point density approx. constant

No “holes” or clusters

1. High minimum distance

Prevents “clumping”

2. Irregularity

Prevents correlations

(1) and (2) combined: “blue noise”
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Background

Measures
• Interested in points in 2D unit square with toroidal metric dT (x, y)

• For a set of pointsX with n := |X| points we define

dx := min
y∈X\{x}

dT (x, y) local mindist,

dX := min
x,y∈X,x6=y

dT (x, y) global mindist,

d̄X :=
1

n

∑
x∈X

dx average mindist.

• Largest mindist by hexagonal arrangement dmax =
√

2/
√

3n

• Normalize every measure by this value

δx := dx/dmax, δX := dX/dmax, δ̄X := d̄X/dmax.
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Background

Generation Method δX δ̄X Note

Jittered Grida 0.049 0.586
Best Candidateb and FPSc 0.751 0.839
Dart throwinga and variantsd 0.765 0.808
CCCVT Centroidse 0.778 0.896 I
CVT Centroids f and

methods using Lloyd’s algorithm 0.795 0.939 I, R
Electrostatic Halftoningg 0.826 0.952 I, R
Boundary Samplingh 0.829 0.862
Low discrepancy i 0.903 0.920 D, R
Farthest-Point Optimization 0.930 0.932 I

a [Cook 1986] b [Mitchell 1991] c [Eldar et al. 1997] d [Lagae and Dutré 2008]
e [Balzer et al. 2009] f [Du et al. 1999] g [Schmaltz et al. 2010]
h [Dunbar and Humphreys 2006] i [Grünschloß and Keller 2009]
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Farthest-Point Optimization



Farthest-Point Optimization

Farthest Point

f f

• Location f that has the maximum distance from all points inX

• Corresponds to the center of the largest empty circle in the domain

• Corresponds to the center of the largest circumcircle of a triangle in
the Delaunay triangulationD(X)
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Farthest-Point Optimization

Optimization Strategy

f f

f

• Successively move each point to the farthest point, i.e. remove it
and reinsert it at the farthest point

• One full iteration: move each point once

• Build full Delaunay triangulation once and update it dynamically
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Main Algorithm

FARTHEST-POINT-OPTIMIZATION(X)

1 D = DELAUNAY(X)
2 repeat
3 foreach vertex x inD
4 (f, rmax) = (x, dx)
5 DELAUNAY-REMOVE(D, x)
6 foreach triangle t inD
7 (c, r) = center and radius of t’s circumcircle
8 if r > rmax
9 (f, rmax) = (c, r)

10 DELAUNAY-INSERT(D, f)
11 until converged
12 return vertices ofD
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Farthest-Point Optimization

Optimizing Random Seed Points

δX ≈ 0.009, δ̄X ≈ 0.469

input
δX ≈ 0.049, δ̄X ≈ 0.645

1/4 iteration
8



Farthest-Point Optimization

Optimizing Random Seed Points

δX ≈ 0.009, δ̄X ≈ 0.469

input
δX ≈ 0.079, δ̄X ≈ 0.756

1/2 iteration
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Farthest-Point Optimization

Optimizing Random Seed Points

δX ≈ 0.009, δ̄X ≈ 0.469

input
δX ≈ 0.772, δ̄X ≈ 0.865

1 iteration
8



Farthest-Point Optimization

Optimizing Random Seed Points

δX ≈ 0.009, δ̄X ≈ 0.469

input
δX ≈ 0.814, δ̄X ≈ 0.905

2 iterations
8



Farthest-Point Optimization

Optimizing Random Seed Points

δX ≈ 0.009, δ̄X ≈ 0.469

input
δX ≈ 0.925, δ̄X ≈ 0.932

63 iterations
8



Farthest-Point Optimization

Optimizing Random Seed Points

δX ≈ 0.009, δ̄X ≈ 0.469

input
δX ≈ 0.930, δ̄X ≈ 0.932

419 iterations
8



Farthest-Point Optimization

Convergence
• Moving a point xmaximizes by definition its local mindist δx
• Since δ̄X ∝

∑
δx → δ̄X increases strictly monotonically

• Stop when δ̄ newX − δ̄ oldX < ε by machine precision

Runtime Complexity
• Dominated by the search operation for the largest circumcircle

• Utilizing a binary tree to track the largest circumcircle yields total
complexity ofO(n log n) for a full iteration

• Delaunay operations in our case typicallyO(1) [Erickson 2005]

• In the paper: local variant withO(n) per iteration but slower
convergence

9
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Farthest-Point Optimization

Spectral Analysis

frequency
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Farthest-Point Opt.
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Application

Image Plane Sampling
• High mindist yields high effective Nyquist frequency

≈
1s
pp

≈
2s
pp

[Dunbar et al. 2006] [Schmaltz et al. 2010] Farthest-Point Opt.
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Application

Image Plane Sampling
• FPO random points irregular but uniform

• Good trade-off between noise and coherent aliasing
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Application

Image Plane Sampling
• FPO random points irregular but uniform

• Good trade-off between noise and coherent aliasing

≈
16

sp
p

MSE = 3.60 · 10−3

Dart Throwing
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Application

Image Plane Sampling
• FPO random points irregular but uniform

• Good trade-off between noise and coherent aliasing

≈
16

sp
p

MSE = 2.58 · 10−3

Farthest-Point Optimized
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Extension



Extension

Partition Algorithm

1024 points 8× 128 points

• Want each subset as well as their union well-distributed

• Idea: partition input set into optimized subsets of equal size
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Extension

Partition Algorithm

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially
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Extension

Partition Algorithm

δ̄X = 0.852 δ̄X = 0.851 δ̄X = 0.832 δ̄X = 0.829

δ̄X = 0.830 δ̄X = 0.804 δ̄X = 0.790 δ̄X = 0.613
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Application

Trajectory Splitting

• Direct light estimation by trajectory splitting
• Precompute FPO points and necessary partitions
• Unbiased estimators by random shifts on unit torus
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Application

Trajectory Splitting
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Application

Trajectory Splitting
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Conclusion

Farthest-Point Optimized Point Sets

• Uniform but irregular

• Higher mindist than previous methods

• Good trade-off between noise and coherent
aliasing

• Optimal blue noise?

Partition Algorithm
• Good results but greedy approach leaves room for improvement

Future Work
• Points on bounded surfaces or triangulated domains

• Behavior in higher dimensions or for non-Euclidean metrics
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Thank you for your attention.
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