Farthest-Point Optimized Point Sets with Maximized Minimum Distance

Thomas Schlömer Daniel Heck Oliver Deussen

Computer Graphics Group University of Konstanz

Well-Distributed Point Sets

Uniform

Avg. point density approx. constant No "holes" or clusters

Well-Distributed Point Sets

Uniform

Avg. point density approx. constant No "holes" or clusters

- High minimum distance Prevents "clumping"
- 2. Irregularity

Prevents correlations

(1) and (2) combined: "blue noise"

1. Farthest-Point Optimization

Main Algorithm

1. Farthest-Point Optimization

Main Algorithm

2. Extension

Measures

- Interested in points in 2D unit square with toroidal metric $d_T(x, y)$
- For a set of points X with n:=|X| points we define

$$\begin{split} d_x &:= \min_{y \in X \setminus \{x\}} d_T(x, y) & \text{local mindist,} \\ d_X &:= \min_{x, y \in X, x \neq y} d_T(x, y) & \text{global mindist,} \\ \bar{d}_X &:= \frac{1}{n} \sum_{x \in X} d_x & \text{average mindist.} \end{split}$$

Measures

- Interested in points in 2D unit square with toroidal metric $d_T(x, y)$
- For a set of points X with n:=|X| points we define

$$\begin{split} d_x &:= \min_{y \in X \setminus \{x\}} d_T(x, y) & \text{local mindist,} \\ d_X &:= \min_{x, y \in X, x \neq y} d_T(x, y) & \text{global mindist,} \\ \bar{d}_X &:= \frac{1}{n} \sum_{x \in X} d_x & \text{average mindist.} \end{split}$$

- Largest mindist by hexagonal arrangement $d_{\max} = \sqrt{2/\sqrt{3}n}$
- Normalize every measure by this value

$$\delta_x := d_x/d_{\max}, \quad \delta_X := d_X/d_{\max}, \quad \bar{\delta}_X := \bar{d}_X/d_{\max}.$$

Generation Method	δ_X	$\bar{\delta}_X$	Note
Jittered Grid ^a	0.049	0.586	
Best Candidate ^b and FPS ^c	0.751	0.839	
Dart throwing ^a and variants ^d	0.765	0.808	
CCCVT Centroids ^e	0.778	0.896	Ι
CVT Centroids ^f and			
methods using Lloyd's algorithm	0.795	0.939	I, R
Electrostatic Halftoning ^g	0.826	0.952	I, R
Boundary Sampling ^h	0.829	0.862	
Low discrepancy ⁱ	0.903	0.920	D, R
Farthest-Point Optimization	0.930	0.932	Ι

^{*a*} [Cook 1986] ^{*b*} [Mitchell 1991] ^{*c*} [Eldar et al. 1997] ^{*d*} [Lagae and Dutré 2008] ^e [Balzer et al. 2009] ^f [Du et al. 1999] ^g [Schmaltz et al. 2010]
 ^h [Dunbar and Humphreys 2006] ⁱ [Grünschloß and Keller 2009]

Generation Method	δ_X	$\bar{\delta}_X$	Note
Jittered Grid ^a	0.049	0.586	
Best Candidate ^b and FPS ^c	0.751	0.839	
Dart throwing ^a and variants ^d	0.765	0.808	
CCCVT Centroids ^e	0.778	0.896	Ι
CVT Centroids ^f and			
methods using Lloyd's algorithm	0.795	0.939	I,R
Electrostatic Halftoning ^g	0.826	0.952	I, R
Boundary Sampling ^h	0.829	0.862	
Low discrepancy ⁱ	0.903	0.920	D,R
Farthest-Point Optimization	0.930	0.932	Ι

^{*a*} [Cook 1986] ^{*b*} [Mitchell 1991] ^{*c*} [Eldar et al. 1997] ^{*d*} [Lagae and Dutré 2008] ^e [Balzer et al. 2009] ^f [Du et al. 1999] ^g [Schmaltz et al. 2010]
 ^h [Dunbar and Humphreys 2006] ⁱ [Grünschloß and Keller 2009]

Generation Method

Jittered Grid^a Best Candidate^b and FPS^c Dart throwing^a and variants^d CCCVT Centroids^e CVT Centroids ^f and methods using Lloyd's algorithm Electrostatic Halftoning^g Boundary Sampling^h Low discrepancy ⁱ

Farthest-Point Optimization

^a [Cook 1986] ^b [Mitchell 1991] ^c [Eldar et al ^e [Balzer et al. 2009] ^f [Du et al. 1999] ^g [So ^h [Dunbar and Humphreys 2006] ⁱ [Grünschl

Generation Method	δ_X	$\bar{\delta}_X$	Note
Jittered Grid ^a	0.049	0.586	
Best Candidate ^b and FPS ^c	0.751	0.839	
Dart throwing ^a and variants ^d	0.765	0.808	
CCCVT Centroids ^e	0.778	0.896	Ι
CVT Centroids ^f and			
methods using Lloyd's algorithm	0.795	0.939	I,R
Electrostatic Halftoning ^g	0.826	0.952	I, R
Boundary Sampling ^h	0.829	0.862	
Low discrepancy ⁱ	0.903	0.920	D, R
Farthest-Point Optimization	0.930	0.932	Ι

^{*a*} [Cook 1986] ^{*b*} [Mitchell 1991] ^{*c*} [Eldar et al. 1997] ^{*d*} [Lagae and Dutré 2008] ^e [Balzer et al. 2009] ^f [Du et al. 1999] ^g [Schmaltz et al. 2010]
 ^h [Dunbar and Humphreys 2006] ⁱ [Grünschloß and Keller 2009]

Generation Method

Jittered Grid^a Best Candidate^b and FPS^c Dart throwing^a and variants^d CCCVT Centroids^e CVT Centroids ^f and methods using Lloyd's algorithm Electrostatic Halftoning^g Boundary Sampling^h Low discrepancy ⁱ Farthest-Point Optimization

^a [Cook 1986] ^b [Mitchell 1991] ^c [Eldar et al ^e [Balzer et al. 2009] ^f [Du et al. 1999] ^g [Sc ^b [Dunbar and Humphreys 2006] ⁱ [Grünschl

Generation Method	δ_X	$\bar{\delta}_X$	Note
Jittered Grid ^a	0.049	0.586	
Best Candidate ^b and FPS ^c	0.751	0.839	
Dart throwing ^a and variants ^d	0.765	0.808	
CCCVT Centroids ^e	0.778	0.896	Ι
CVT Centroids ^f and			
methods using Lloyd's algorithm	0.795	0.939	I,R
Electrostatic Halftoning ^g	0.826	0.952	I, R
Boundary Sampling ^h	0.829	0.862	
Low discrepancy ⁱ	0.903	0.920	D, R
Farthest-Point Optimization	0.930	0.932	Ι

^{*a*} [Cook 1986] ^{*b*} [Mitchell 1991] ^{*c*} [Eldar et al. 1997] ^{*d*} [Lagae and Dutré 2008]

^e [Balzer et al. 2009] ^f [Du et al. 1999] ^g [Schmaltz et al. 2010]
 ^h [Dunbar and Humphreys 2006] ⁱ [Grünschloß and Keller 2009]

Generation Method

Jittered Grid^a Best Candidate^b and FPS^c Dart throwing^a and variants^d CCCVT Centroids^e CVT Centroids ^f and methods using Lloyd's algorithm Electrostatic Halftoning^g Boundary Sampling^h Low discrepancy ⁱ

Farthest-Point Optimization

^a [Cook 1986] ^b [Mitchell 1991] ^c [Eldar et al ^e [Balzer et al. 2009] ^f [Du et al. 1999] ^g [So ^h [Dunbar and Humphreys 2006] ⁱ [Grünschl

Generation Method	δ_X	$\bar{\delta}_X$	Note
Jittered Grid ^a	0.049	0.586	
Best Candidate ^b and FPS ^c	0.751	0.839	
Dart throwing ^a and variants ^d	0.765	0.808	
CCCVT Centroids ^e	0.778	0.896	Ι
CVT Centroids ^f and			
methods using Lloyd's algorithm	0.795	0.939	I,R
Electrostatic Halftoning ^g	0.826	0.952	I,R
Boundary Sampling ^h	0.829	0.862	
Low discrepancy ⁱ	0.903	0.920	D,R
Farthest-Point Optimization	0.930	0.932	Ι

^{*a*} [Cook 1986] ^{*b*} [Mitchell 1991] ^{*c*} [Eldar et al. 1997] ^{*d*} [Lagae and Dutré 2008]

^e [Balzer et al. 2009] ^f [Du et al. 1999] ^g [Schmaltz et al. 2010]
 ^h [Dunbar and Humphreys 2006] ⁱ [Grünschloß and Keller 2009]

Generation Method

Jittered Grid^a Best Candidate^b and FPS^c Dart throwing^a and variants^d CCCVT Centroids^e CVT Centroids ^f and methods using Lloyd's algorithm Electrostatic Halftoning^g Boundary Sampling^h Low discrepancy ⁱ

Farthest-Point Optimization

^a [Cook 1986] ^b [Mitchell 1991] ^c [Eldar et al ^e [Balzer et al. 2009] ^f [Du et al. 1999] ^g [So ^h [Dunbar and Humphreys 2006] ⁱ [Grünschl

Farthest Point

- Location f that has the maximum distance from all points in \boldsymbol{X}
- Corresponds to the center of the largest empty circle in the domain
- Corresponds to the center of the largest circumcircle of a triangle in the Delaunay triangulation $\mathcal{D}(X)$

Optimization Strategy

- Successively move each point to the farthest point, i.e. remove it and reinsert it at the farthest point
- One full iteration: move each point once
- Build full Delaunay triangulation once and update it dynamically

Main Algorithm

```
FARTHEST-POINT-OPTIMIZATION(X)
    D = \mathsf{Delaunay}(X)
 2
     repeat
 3
          foreach vertex x in D
               (f, r_{\max}) = (x, d_x)
 4
               DELAUNAY-REMOVE(D, x)
 5
 6
               foreach triangle t in D
                    (c, r) = center and radius of t's circumcircle
 7
 8
                    if r > r_{\max}
 9
                         (f, r_{\max}) = (c, r)
10
               DELAUNAY-INSERT(D, f)
11
     until converged
12
     return vertices of D
```


Convergence

- Moving a point x maximizes by definition its local mindist δ_x
- Since $\bar{\delta}_X \propto \sum \delta_x \ o \ \bar{\delta}_X$ increases strictly monotonically
- Stop when $\bar{\delta}_X^{\text{new}} \bar{\delta}_X^{\text{old}} < \epsilon$ by machine precision

Convergence

- Moving a point x maximizes by definition its local mindist δ_x
- Since $\bar{\delta}_X \propto \sum \delta_x \, o \, \bar{\delta}_X$ increases strictly monotonically
- Stop when $\bar{\delta}_X^{\text{new}} \bar{\delta}_X^{\text{old}} < \epsilon$ by machine precision

Runtime Complexity

- Dominated by the search operation for the largest circumcircle
- Utilizing a binary tree to track the largest circumcircle yields total complexity of $\mathcal{O}(n\log n)$ for a full iteration
- Delaunay operations in our case typically $\mathcal{O}(1)$ [Erickson 2005]
- In the paper: local variant with $\mathcal{O}(n)$ per iteration but slower convergence

Spectral Analysis

Image Plane Sampling

• High mindist yields high effective Nyquist frequency

Image Plane Sampling

- FPO random points irregular but uniform
- Good trade-off between noise and coherent aliasing

Image Plane Sampling

- FPO random points irregular but uniform
- Good trade-off between noise and coherent aliasing

Dart Throwing

Image Plane Sampling

- FPO random points irregular but uniform
- Good trade-off between noise and coherent aliasing

 $MSE = 2.58 \cdot 10^{-3}$ Farthest-Point Optimized

- Want each subset as well as their union well-distributed
- Idea: partition input set into optimized subsets of equal size

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Trajectory Splitting

- Direct light estimation by trajectory splitting
- Precompute FPO points and necessary partitions
- Unbiased estimators by random shifts on unit torus

Trajectory Splitting

Trajectory Splitting

Farthest-Point Optimized Point Sets

- Uniform but irregular
- Higher mindist than previous methods
- Good trade-off between noise and coherent aliasing
- Optimal blue noise?

Farthest-Point Optimized Point Sets

- Uniform but irregular
- Higher mindist than previous methods
- Good trade-off between noise and coherent aliasing
- Optimal blue noise?

Partition Algorithm

• Good results but greedy approach leaves room for improvement

Farthest-Point Optimized Point Sets

- Uniform but irregular
- Higher mindist than previous methods
- Good trade-off between noise and coherent aliasing
- Optimal blue noise?

Partition Algorithm

• Good results but greedy approach leaves room for improvement

Future Work

- Points on bounded surfaces or triangulated domains
- Behavior in higher dimensions or for non-Euclidean metrics

Thank you for your attention.

References

- Balzer, M., Schlömer, T., and Deussen O., 2009.
 Capacity-Constrained Point Distributions: A Variant of Lloyd's Method.
 ACM Trans. Graph. (Proceedings of SIGGRAPH 2009) 28, 3, 86:1–8.
- Cook, R. L., 1986.
 Stochastic Sampling in Computer Graphics.
 Computer Graphics (Proc. of SIGGRAPH 86) 5, 1, 51–72.
- Du., Q., Faber, V., and Gunzburger, M., 1999.
 Centroidal Voronoi tessellations: Applications and Algorithms.
 SIAM Review 41, 4, 637–676.
- Dunbar, D., and Humphreys, G., 2006.
 A Spatial Data Structure for fast Poisson-Disk Sample Generation.
 ACM Trans. Graph. (Proceedings of SIGGRAPH 2006) 25, 3, 503–508.

References

- Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y.Y., 1997. The Farthest Point Strategy for Progressive Image Sampling. IEEE Trans. Image Process. 6, 9, 1305–1315.
- Erickson, Jeff, 2005.
 Dense Point Sets Have Sparse Delaunay Triangulations.
 Discrete Comput. Geom. 1, 33, 83–115.
- Grünschloß, L., and Keller, A., 2009. (t, m, s)-nets and maximized minimum distance, part II. Monte Carlo and quasi-Monte Carlo Methods 2008, 395–409.
- Lagae, A., and Dutré, P., 2008.
 A Comparison of Methods for Generating Poisson-Disk Distributions.
 Computer Graphics Forum 27, 1, 114–129.

References

- Lloyd, S. P., 1982.
 Least Square Quantization in PCM.
 IEEE Transactions on Information Theory, 28, 2, 129–137.
- Mitchell, D. P., 1991.
 Spectrally Optimal Sampling for Distribution Ray Tracing.
 Computer Graphics (Proc. of SIGGRAPH 91), 157–164.
- Schmaltz, C., Gwosdek, P., Bruhn, A., and Weickert, J., 2010. *Electrostatic Halftoning*. Computer Graphics Forum 29, 8, 2313–2327.