
Farthest-Point Optimized Point Sets with
Maximized Minimum Distance

Thomas Schlömer Daniel Heck Oliver Deussen

Computer Graphics Group
University of Konstanz

Introduction

Well-Distributed Point Sets

Uniform

Avg. point density approx. constant

No “holes” or clusters

1. High minimum distance

Prevents “clumping”

2. Irregularity

Prevents correlations

(1) and (2) combined: “blue noise”

1

Introduction

Well-Distributed Point Sets

Uniform

Avg. point density approx. constant

No “holes” or clusters

1. High minimum distance

Prevents “clumping”

2. Irregularity

Prevents correlations

(1) and (2) combined: “blue noise”

1

Introduction

1. Farthest-Point Optimization
Main Algorithm

2. Extension
Partition Algorithm

2

Introduction

1. Farthest-Point Optimization
Main Algorithm

2. Extension
Partition Algorithm

2

Introduction

1. Farthest-Point Optimization
Main Algorithm

2. Extension
Partition Algorithm

2

Background

Background

Measures
• Interested in points in 2D unit square with toroidal metric dT (x, y)

• For a set of pointsX with n := |X| points we define

dx := min
y∈X\{x}

dT (x, y) local mindist,

dX := min
x,y∈X,x6=y

dT (x, y) global mindist,

d̄X :=
1

n

∑
x∈X

dx average mindist.

• Largest mindist by hexagonal arrangement dmax =
√

2/
√

3n

• Normalize every measure by this value

δx := dx/dmax, δX := dX/dmax, δ̄X := d̄X/dmax.

3

Background

Measures
• Interested in points in 2D unit square with toroidal metric dT (x, y)

• For a set of pointsX with n := |X| points we define

dx := min
y∈X\{x}

dT (x, y) local mindist,

dX := min
x,y∈X,x6=y

dT (x, y) global mindist,

d̄X :=
1

n

∑
x∈X

dx average mindist.

• Largest mindist by hexagonal arrangement dmax =
√

2/
√

3n

• Normalize every measure by this value

δx := dx/dmax, δX := dX/dmax, δ̄X := d̄X/dmax.

3

Background

Generation Method δX δ̄X Note

Jittered Grida 0.049 0.586
Best Candidateb and FPSc 0.751 0.839
Dart throwinga and variantsd 0.765 0.808
CCCVT Centroidse 0.778 0.896 I
CVT Centroids f and

methods using Lloyd’s algorithm 0.795 0.939 I, R
Electrostatic Halftoningg 0.826 0.952 I, R
Boundary Samplingh 0.829 0.862
Low discrepancy i 0.903 0.920 D, R
Farthest-Point Optimization 0.930 0.932 I

a [Cook 1986] b [Mitchell 1991] c [Eldar et al. 1997] d [Lagae and Dutré 2008]
e [Balzer et al. 2009] f [Du et al. 1999] g [Schmaltz et al. 2010]
h [Dunbar and Humphreys 2006] i [Grünschloß and Keller 2009]

4

Background

Generation Method δX δ̄X Note

Jittered Grida 0.049 0.586
Best Candidateb and FPSc 0.751 0.839
Dart throwinga and variantsd 0.765 0.808
CCCVT Centroidse 0.778 0.896 I
CVT Centroids f and

methods using Lloyd’s algorithm 0.795 0.939 I, R
Electrostatic Halftoningg 0.826 0.952 I, R
Boundary Samplingh 0.829 0.862
Low discrepancy i 0.903 0.920 D, R
Farthest-Point Optimization 0.930 0.932 I

a [Cook 1986] b [Mitchell 1991] c [Eldar et al. 1997] d [Lagae and Dutré 2008]
e [Balzer et al. 2009] f [Du et al. 1999] g [Schmaltz et al. 2010]
h [Dunbar and Humphreys 2006] i [Grünschloß and Keller 2009]

4

Background

Generation Method δX δ̄X Note

Jittered Grida 0.049 0.586
Best Candidateb and FPSc 0.751 0.839
Dart throwinga and variantsd 0.765 0.808
CCCVT Centroidse 0.778 0.896 I
CVT Centroids f and

methods using Lloyd’s algorithm 0.795 0.939 I, R
Electrostatic Halftoningg 0.826 0.952 I, R
Boundary Samplingh 0.829 0.862
Low discrepancy i 0.903 0.920 D, R
Farthest-Point Optimization 0.930 0.932 I

a [Cook 1986] b [Mitchell 1991] c [Eldar et al. 1997] d [Lagae and Dutré 2008]
e [Balzer et al. 2009] f [Du et al. 1999] g [Schmaltz et al. 2010]
h [Dunbar and Humphreys 2006] i [Grünschloß and Keller 2009]

4

δX ≈ 0.765, δ̄X ≈ 0.808

Background

Generation Method δX δ̄X Note

Jittered Grida 0.049 0.586
Best Candidateb and FPSc 0.751 0.839
Dart throwinga and variantsd 0.765 0.808
CCCVT Centroidse 0.778 0.896 I
CVT Centroids f and

methods using Lloyd’s algorithm 0.795 0.939 I, R
Electrostatic Halftoningg 0.826 0.952 I, R
Boundary Samplingh 0.829 0.862
Low discrepancy i 0.903 0.920 D, R
Farthest-Point Optimization 0.930 0.932 I

a [Cook 1986] b [Mitchell 1991] c [Eldar et al. 1997] d [Lagae and Dutré 2008]
e [Balzer et al. 2009] f [Du et al. 1999] g [Schmaltz et al. 2010]
h [Dunbar and Humphreys 2006] i [Grünschloß and Keller 2009]

4

Background

Generation Method δX δ̄X Note

Jittered Grida 0.049 0.586
Best Candidateb and FPSc 0.751 0.839
Dart throwinga and variantsd 0.765 0.808
CCCVT Centroidse 0.778 0.896 I
CVT Centroids f and

methods using Lloyd’s algorithm 0.795 0.939 I, R
Electrostatic Halftoningg 0.826 0.952 I, R
Boundary Samplingh 0.829 0.862
Low discrepancy i 0.903 0.920 D, R
Farthest-Point Optimization 0.930 0.932 I

a [Cook 1986] b [Mitchell 1991] c [Eldar et al. 1997] d [Lagae and Dutré 2008]
e [Balzer et al. 2009] f [Du et al. 1999] g [Schmaltz et al. 2010]
h [Dunbar and Humphreys 2006] i [Grünschloß and Keller 2009]

4

δX ≈ 0.795, δ̄X ≈ 0.939

Background

Generation Method δX δ̄X Note

Jittered Grida 0.049 0.586
Best Candidateb and FPSc 0.751 0.839
Dart throwinga and variantsd 0.765 0.808
CCCVT Centroidse 0.778 0.896 I
CVT Centroids f and

methods using Lloyd’s algorithm 0.795 0.939 I, R
Electrostatic Halftoningg 0.826 0.952 I, R
Boundary Samplingh 0.829 0.862
Low discrepancy i 0.903 0.920 D, R
Farthest-Point Optimization 0.930 0.932 I

a [Cook 1986] b [Mitchell 1991] c [Eldar et al. 1997] d [Lagae and Dutré 2008]
e [Balzer et al. 2009] f [Du et al. 1999] g [Schmaltz et al. 2010]
h [Dunbar and Humphreys 2006] i [Grünschloß and Keller 2009]

4

Background

Generation Method δX δ̄X Note

Jittered Grida 0.049 0.586
Best Candidateb and FPSc 0.751 0.839
Dart throwinga and variantsd 0.765 0.808
CCCVT Centroidse 0.778 0.896 I
CVT Centroids f and

methods using Lloyd’s algorithm 0.795 0.939 I, R
Electrostatic Halftoningg 0.826 0.952 I, R
Boundary Samplingh 0.829 0.862
Low discrepancy i 0.903 0.920 D, R
Farthest-Point Optimization 0.930 0.932 I

a [Cook 1986] b [Mitchell 1991] c [Eldar et al. 1997] d [Lagae and Dutré 2008]
e [Balzer et al. 2009] f [Du et al. 1999] g [Schmaltz et al. 2010]
h [Dunbar and Humphreys 2006] i [Grünschloß and Keller 2009]

4

δX ≈ 0.903, δ̄X ≈ 0.920

Background

Generation Method δX δ̄X Note

Jittered Grida 0.049 0.586
Best Candidateb and FPSc 0.751 0.839
Dart throwinga and variantsd 0.765 0.808
CCCVT Centroidse 0.778 0.896 I
CVT Centroids f and

methods using Lloyd’s algorithm 0.795 0.939 I, R
Electrostatic Halftoningg 0.826 0.952 I, R
Boundary Samplingh 0.829 0.862
Low discrepancy i 0.903 0.920 D, R
Farthest-Point Optimization 0.930 0.932 I

a [Cook 1986] b [Mitchell 1991] c [Eldar et al. 1997] d [Lagae and Dutré 2008]
e [Balzer et al. 2009] f [Du et al. 1999] g [Schmaltz et al. 2010]
h [Dunbar and Humphreys 2006] i [Grünschloß and Keller 2009]

4

Background

Generation Method δX δ̄X Note

Jittered Grida 0.049 0.586
Best Candidateb and FPSc 0.751 0.839
Dart throwinga and variantsd 0.765 0.808
CCCVT Centroidse 0.778 0.896 I
CVT Centroids f and

methods using Lloyd’s algorithm 0.795 0.939 I, R
Electrostatic Halftoningg 0.826 0.952 I, R
Boundary Samplingh 0.829 0.862
Low discrepancy i 0.903 0.920 D, R
Farthest-Point Optimization 0.930 0.932 I

a [Cook 1986] b [Mitchell 1991] c [Eldar et al. 1997] d [Lagae and Dutré 2008]
e [Balzer et al. 2009] f [Du et al. 1999] g [Schmaltz et al. 2010]
h [Dunbar and Humphreys 2006] i [Grünschloß and Keller 2009]

4

δX ≈ 0.930, δ̄X ≈ 0.932

Farthest-Point Optimization

Farthest-Point Optimization

Farthest Point

f f

• Location f that has the maximum distance from all points inX

• Corresponds to the center of the largest empty circle in the domain

• Corresponds to the center of the largest circumcircle of a triangle in
the Delaunay triangulationD(X)

5

Farthest-Point Optimization

Optimization Strategy

f f

f

• Successively move each point to the farthest point, i.e. remove it
and reinsert it at the farthest point

• One full iteration: move each point once

• Build full Delaunay triangulation once and update it dynamically

6

Main Algorithm

FARTHEST-POINT-OPTIMIZATION(X)

1 D = DELAUNAY(X)
2 repeat
3 foreach vertex x inD
4 (f, rmax) = (x, dx)
5 DELAUNAY-REMOVE(D, x)
6 foreach triangle t inD
7 (c, r) = center and radius of t’s circumcircle
8 if r > rmax
9 (f, rmax) = (c, r)

10 DELAUNAY-INSERT(D, f)
11 until converged
12 return vertices ofD

7

Farthest-Point Optimization

Optimizing Random Seed Points

δX ≈ 0.009, δ̄X ≈ 0.469

input
δX ≈ 0.049, δ̄X ≈ 0.645

1/4 iteration
8

Farthest-Point Optimization

Optimizing Random Seed Points

δX ≈ 0.009, δ̄X ≈ 0.469

input
δX ≈ 0.079, δ̄X ≈ 0.756

1/2 iteration
8

Farthest-Point Optimization

Optimizing Random Seed Points

δX ≈ 0.009, δ̄X ≈ 0.469

input
δX ≈ 0.772, δ̄X ≈ 0.865

1 iteration
8

Farthest-Point Optimization

Optimizing Random Seed Points

δX ≈ 0.009, δ̄X ≈ 0.469

input
δX ≈ 0.814, δ̄X ≈ 0.905

2 iterations
8

Farthest-Point Optimization

Optimizing Random Seed Points

δX ≈ 0.009, δ̄X ≈ 0.469

input
δX ≈ 0.925, δ̄X ≈ 0.932

63 iterations
8

Farthest-Point Optimization

Optimizing Random Seed Points

δX ≈ 0.009, δ̄X ≈ 0.469

input
δX ≈ 0.930, δ̄X ≈ 0.932

419 iterations
8

Farthest-Point Optimization

Convergence
• Moving a point xmaximizes by definition its local mindist δx
• Since δ̄X ∝

∑
δx → δ̄X increases strictly monotonically

• Stop when δ̄ newX − δ̄ oldX < ε by machine precision

Runtime Complexity
• Dominated by the search operation for the largest circumcircle

• Utilizing a binary tree to track the largest circumcircle yields total
complexity ofO(n log n) for a full iteration

• Delaunay operations in our case typicallyO(1) [Erickson 2005]

• In the paper: local variant withO(n) per iteration but slower
convergence

9

Farthest-Point Optimization

Convergence
• Moving a point xmaximizes by definition its local mindist δx
• Since δ̄X ∝

∑
δx → δ̄X increases strictly monotonically

• Stop when δ̄ newX − δ̄ oldX < ε by machine precision

Runtime Complexity
• Dominated by the search operation for the largest circumcircle

• Utilizing a binary tree to track the largest circumcircle yields total
complexity ofO(n log n) for a full iteration

• Delaunay operations in our case typicallyO(1) [Erickson 2005]

• In the paper: local variant withO(n) per iteration but slower
convergence

9

Farthest-Point Optimization

Spectral Analysis

frequency

0 135 270 405 540

p
o
w
e
r

0

1

2

3

4

Dart Throwing
frequency

0 135 270 405 540

p
o
w
e
r

0

1

2

3

4

[Balzer et al. 2009]
frequency

0 135 270 405 540

p
o
w
e
r

0

1

2

3

4

Farthest-Point Opt.

10

Application

Image Plane Sampling
• High mindist yields high effective Nyquist frequency

≈
1s
pp

≈
2s
pp

[Dunbar et al. 2006] [Schmaltz et al. 2010] Farthest-Point Opt.
11

Application

Image Plane Sampling
• FPO random points irregular but uniform

• Good trade-off between noise and coherent aliasing

12

Application

Image Plane Sampling
• FPO random points irregular but uniform

• Good trade-off between noise and coherent aliasing

≈
16

sp
p

MSE = 3.60 · 10−3

Dart Throwing

12

Application

Image Plane Sampling
• FPO random points irregular but uniform

• Good trade-off between noise and coherent aliasing

≈
16

sp
p

MSE = 2.58 · 10−3

Farthest-Point Optimized

12

Extension

Extension

Partition Algorithm

1024 points 8× 128 points

• Want each subset as well as their union well-distributed

• Idea: partition input set into optimized subsets of equal size

13

Extension

Partition Algorithm

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially

14

Extension

Partition Algorithm

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially

14

Extension

Partition Algorithm

f

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially

14

Extension

Partition Algorithm

f

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially

14

Extension

Partition Algorithm

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially

14

Extension

Partition Algorithm

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially

14

Extension

Partition Algorithm

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially

14

Extension

Partition Algorithm

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially

14

Extension

Partition Algorithm

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially

14

Extension

Partition Algorithm

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially

14

Extension

Partition Algorithm

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially

14

Extension

Partition Algorithm

• For each subset: discrete space variant of main FPO algorithm

• Main difference: f now bound to a point f ∈ X
• Greedy approach: construct subsets sequentially

14

Extension

Partition Algorithm

δ̄X = 0.852 δ̄X = 0.851 δ̄X = 0.832 δ̄X = 0.829

δ̄X = 0.830 δ̄X = 0.804 δ̄X = 0.790 δ̄X = 0.613

15

Application

Trajectory Splitting

• Direct light estimation by trajectory splitting
• Precompute FPO points and necessary partitions
• Unbiased estimators by random shifts on unit torus

16

Application

Trajectory Splitting

4
×

4
sa
m
pl
es

Sobol (0, 2) FPO reference
1 10

Number of Pixel and Integrator Samples

0.0001

0.001

0.01

0.1

M
e
a
n
 S
q
u
a
re
 E
rr
o
r

Sobol' low discr.

Partitioned FPO

17

Application

Trajectory Splitting

1
×

16

Sobol (0, 2) FPO

2
×

8

Sobol (0, 2) FPO

8
×

2

Sobol (0, 2) FPO

16
×

1

Sobol (0, 2) FPO

0 5 10 15 20 25 30

Number of Pixel Samples

0

0.001

0.002

0.003

0.004

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

051015202530

Number of Integrator Samples

Sobol' low discr. (16 cs)

FPO, opt. partition (16 cs)

Sobol' low discr. (32 cs)

FPO, opt. partition (32 cs)

FPO, no partition (32 cs)

17

Conclusion

Conclusion

Farthest-Point Optimized Point Sets

• Uniform but irregular

• Higher mindist than previous methods

• Good trade-off between noise and coherent
aliasing

• Optimal blue noise?

Partition Algorithm
• Good results but greedy approach leaves room for improvement

Future Work
• Points on bounded surfaces or triangulated domains

• Behavior in higher dimensions or for non-Euclidean metrics

18

Conclusion

Farthest-Point Optimized Point Sets

• Uniform but irregular

• Higher mindist than previous methods

• Good trade-off between noise and coherent
aliasing

• Optimal blue noise?

Partition Algorithm
• Good results but greedy approach leaves room for improvement

Future Work
• Points on bounded surfaces or triangulated domains

• Behavior in higher dimensions or for non-Euclidean metrics

18

Conclusion

Farthest-Point Optimized Point Sets

• Uniform but irregular

• Higher mindist than previous methods

• Good trade-off between noise and coherent
aliasing

• Optimal blue noise?

Partition Algorithm
• Good results but greedy approach leaves room for improvement

Future Work
• Points on bounded surfaces or triangulated domains

• Behavior in higher dimensions or for non-Euclidean metrics

18

Thank you for your attention.

References

I Balzer, M., Schlömer, T., and Deussen O., 2009.
Capacity-Constrained Point Distributions: A Variant of Lloyd’s Method.
ACM Trans. Graph. (Proceedings of SIGGRAPH 2009) 28, 3, 86:1–8.

I Cook, R. L., 1986.
Stochastic Sampling in Computer Graphics.
Computer Graphics (Proc. of SIGGRAPH 86) 5, 1, 51–72.

I Du., Q., Faber, V., and Gunzburger, M., 1999.
Centroidal Voronoi tessellations: Applications and Algorithms.
SIAM Review 41, 4, 637–676.

I Dunbar, D., and Humphreys, G., 2006.
A Spatial Data Structure for fast Poisson-Disk Sample Generation.
ACM Trans. Graph. (Proceedings of SIGGRAPH 2006) 25, 3, 503–508.

19

References

I Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y. Y., 1997.
The Farthest Point Strategy for Progressive Image Sampling.
IEEE Trans. Image Process. 6, 9, 1305–1315.

I Erickson, Jeff, 2005.
Dense Point Sets Have Sparse Delaunay Triangulations.
Discrete Comput. Geom. 1, 33, 83–115.

I Grünschloß, L., and Keller, A., 2009.
(t,m, s)-nets and maximized minimum distance, part II.
Monte Carlo and quasi-Monte Carlo Methods 2008, 395–409.

I Lagae, A., and Dutré, P., 2008.
A Comparison of Methods for Generating Poisson-Disk Distributions.
Computer Graphics Forum 27, 1, 114–129.

20

References

I Lloyd, S. P., 1982.
Least Square Quantization in PCM.
IEEE Transactions on Information Theory, 28, 2, 129–137.

I Mitchell, D. P., 1991.
Spectrally Optimal Sampling for Distribution Ray Tracing.
Computer Graphics (Proc. of SIGGRAPH 91), 157–164.

I Schmaltz, C., Gwosdek, P., Bruhn, A., and Weickert, J., 2010.
Electrostatic Halftoning.
Computer Graphics Forum 29, 8, 2313–2327.

21

