Farthest-Point Optimized Point Sets with Maximized Minimum Distance

Thomas Schlömer Daniel Heck Oliver Deussen

Computer Graphics Group
University of Konstanz

Introduction

Well-Distributed Point Sets

Uniform
Avg. point density approx. constant
No "holes" or clusters

Introduction

Well-Distributed Point Sets

Uniform
Avg. point density approx. constant No "holes" or clusters

1. High minimum distance

Prevents "clumping"
2. Irregularity

Prevents correlations
(1) and (2) combined: "blue noise"

Introduction

Introduction

1. Farthest-Point Optimization

Main Algorithm

Introduction

1. Farthest-Point Optimization
 Main Algorithm
 2. Extension
 Partition Algorithm

Background

Background

Measures

- Interested in points in 2D unit square with toroidal metric $d_{T}(x, y)$
- For a set of points X with $n:=|X|$ points we define

$$
\begin{aligned}
d_{x} & :=\min _{y \in X \backslash\{x\}} d_{T}(x, y) & \text { local mindist, } \\
d_{X} & :=\min _{x, y \in X, x \neq y} d_{T}(x, y) & \text { global mindist, } \\
\bar{d}_{X} & :=\frac{1}{n} \sum_{x \in X} d_{x} & \text { average mindist. }
\end{aligned}
$$

Background

Measures

- Interested in points in 2D unit square with toroidal metric $d_{T}(x, y)$
- For a set of points X with $n:=|X|$ points we define

$$
\begin{array}{rlr}
d_{x} & :=\min _{y \in X \backslash\{x\}} d_{T}(x, y) & \text { local mindist, } \\
d_{X} & :=\min _{x, y \in X, x \neq y} d_{T}(x, y) & \text { global mindist, } \\
\bar{d}_{X} & :=\frac{1}{n} \sum_{x \in X} d_{x} & \text { average mindist. }
\end{array}
$$

- Largest mindist by hexagonal arrangement $d_{\max }=\sqrt{2 / \sqrt{3} n}$
- Normalize every measure by this value

$$
\delta_{x}:=d_{x} / d_{\max }, \quad \delta_{X}:=d_{X} / d_{\max }, \quad \bar{\delta}_{X}:=\bar{d}_{X} / d_{\max } .
$$

Background

Generation Method	δ_{X}	$\bar{\delta}_{X}$	Note
Jittered Grid ${ }^{\text {a }}$	0.049	0.586	
Best Candidate ${ }^{b}$ and FPS ${ }^{\text {c }}$	0.751	0.839	
Dart throwing ${ }^{a}$ and variants ${ }^{d}$	0.765	0.808	
CCCVT Centroids ${ }^{e}$	0.778	0.896	I
CVT Centroids ${ }^{f}$ and methods using Lloyd's algorithm	0.795	0.939	I, R
Electrostatic Halftoning ${ }^{g}$	0.826	0.952	I, R
Boundary Sampling ${ }^{h}$	0.829	0.862	
Low discrepancy ${ }^{i}$	0.903	0.920	D, R
Farthest-Point Optimization	0.930	0.932	I
${ }^{a}\left[\right.$ Cook 1986] ${ }^{b}$ [Mitchell 1991] ${ }^{c}$ [Eldar et al. 1997] ${ }^{d}$ [Lagae an ${ }^{e}$ [Balzer et al. 2009] ${ }^{f}$ [Du et al. 1999] ${ }^{g}$ [Schmaltz et al. 2010] ${ }^{h}$ [Dunbar and Humphreys 2006] ${ }^{i}$ [Grünschloß and Keller 2009]			

Background

Generation Method	δ_{X}	$\bar{\delta}_{X}$	Note
Jittered Grid ${ }^{\text {a }}$	0.049	0.586	
Best Candidate ${ }^{b}$ and FPS ${ }^{\text {c }}$	0.751	0.839	
Dart throwing ${ }^{a}$ and variants ${ }^{\text {d }}$	0.765	0.808	
CCCVT Centroids ${ }^{e}$	0.778	0.896	I
CVT Centroids ${ }^{f}$ and methods using Lloyd's algorithm	0.795	0.939	I, R
Electrostatic Halftoning ${ }^{\text {g }}$	0.826	0.952	I, R
Boundary Sampling ${ }^{\text {h }}$	0.829	0.862	
Low discrepancy ${ }^{i}$	0.903	0.920	D, R
Farthest-Point Optimization	0.930	0.932	I
${ }^{a}$ [Cook 1986] ${ }^{b}$ [Mitchell 1991] ${ }^{c}$ [Eldar et al. 1997] ${ }^{d}$ [Lagae and ${ }^{e}$ [Balzer et al. 2009] ${ }^{f}$ [Du et al. 1999] ${ }^{g}$ [Schmaltz et al. 2010] ${ }^{h}$ [Dunbar and Humphreys 2006] ${ }^{i}$ [Grünschloß and Keller 2009]			

Background

Generation Method

Jittered Grid ${ }^{a}$
Best Candidate ${ }^{b}$ and FPS ${ }^{c}$
Dart throwing ${ }^{a}$ and variants ${ }^{d}$
CCCVT Centroids ${ }^{e}$
CVT Centroids ${ }^{f}$ and
methods using Lloyd's algorithm
Electrostatic Halftoning ${ }^{g}$
Boundary Samplingh
Low discrepancy
Farthest-Point Optimization
${ }^{a}$ [Cook 1986] ${ }^{b}$ [Mitchell 1991] ${ }^{c}$ [Eldar et a
${ }^{e}$ [Balzer et al. 2009] ${ }^{f}$ [Du et al. 1999] ${ }^{g}$ [Sc
${ }^{h}$ [Dunbar and Humphreys 2006] ${ }^{i}$ [Grünschl

$\delta_{X} \approx 0.765, \bar{\delta}_{X} \approx 0.808$

Background

Background

Generation Method
Jittered Grid ${ }^{a}$
Best Candidate ${ }^{b}$ and FPS c
Dart throwing ${ }^{a}$ and variants ${ }^{d}$CCCVT Centroids ${ }^{e}$CVT Centroids ${ }^{f}$ andmethods using Lloyd's algorithmElectrostatic Halftoning ${ }^{g}$Boundary SamplinghLow discrepancy ${ }^{i}$Farthest-Point Optimization${ }^{a}$ [Cook 1986] ${ }^{b}$ [Mitchell 1991] ${ }^{c}$ [Eldar et a${ }^{e}$ [Balzer et al. 2009] ${ }^{f}$ [Du et al. 1999] ${ }^{g}$ [Sc${ }^{h}$ [Dunbar and Humphreys 2006] ${ }^{i}$ [Grünschl

$$
\delta_{X} \approx 0.795, \bar{\delta}_{X} \approx 0.939
$$

Background

Background

Generation Method
Jittered Grid ${ }^{a}$
Best Candidate ${ }^{b}$ and FPS ${ }^{c}$
Dart throwing ${ }^{a}$ and variants ${ }^{d}$CCCVT Centroids ${ }^{e}$CVT Centroids ${ }^{f}$ andmethods using Lloyd's algorithmElectrostatic Halftoning ${ }^{g}$Boundary Sampling ${ }^{h}$
Low discrepancy
Farthest-Point Optimization${ }^{a}$ [Cook 1986] ${ }^{b}$ [Mitchell 1991] ${ }^{c}$ [Eldar et a${ }^{e}$ [Balzer et al. 2009] ${ }^{f}$ [Du et al. 1999] ${ }^{g}$ [Sc
${ }^{h}$ [Dunbar and Humphreys 2006] ${ }^{i}$ [Grünschl

Background

Background

Generation Method

Jittered Grid ${ }^{a}$
Best Candidate ${ }^{b}$ and FPS ${ }^{c}$
Dart throwing ${ }^{a}$ and variants ${ }^{d}$
CCCVT Centroids ${ }^{e}$
CVT Centroids ${ }^{f}$ and
methods using Lloyd's algorithm
Electrostatic Halftoning ${ }^{g}$
Boundary Sampling ${ }^{h}$
Low discrepancy
Farthest-Point Optimization
${ }^{a}$ [Cook 1986] ${ }^{b}$ [Mitchell 1991] ${ }^{c}$ [Eldar et a
${ }^{e}$ [Balzer et al. 2009] ${ }^{f}$ [Du et al. 1999] ${ }^{g}$ [Sc
${ }^{h}$ [Dunbar and Humphreys 2006] ${ }^{i}$ [Grünschl

$\delta_{X} \approx 0.930, \bar{\delta}_{X} \approx 0.932$

Farthest-Point Optimization

Farthest-Point Optimization

Farthest Point

- Location f that has the maximum distance from all points in X
- Corresponds to the center of the largest empty circle in the domain
- Corresponds to the center of the largest circumcircle of a triangle in the Delaunay triangulation $\mathcal{D}(X)$

Farthest-Point Optimization

Optimization Strategy

- Successively move each point to the farthest point, i.e. remove it and reinsert it at the farthest point
- One full iteration: move each point once
- Build full Delaunay triangulation once and update it dynamically

Main Algorithm

```
FARTHEST-POINT-OPTIMIZATION ( }X
    1 D = Delaunay(X)
2 repeat
            foreach vertex x in D
                (f,rmax )}=(x,\mp@subsup{d}{x}{}
Delaunay-Remove( }D,x
foreach triangle t in D
            (c,r) = center and radius of t's circumcircle
            if }r>\mp@subsup{r}{\mathrm{ max }}{
                (f,rmax )}=(c,r
            Delaunay-Insert( }D,f
1 1 ~ u n t i l ~ c o n v e r g e d ~
1 2 \text { return vertices of } D
```


Farthest-Point Optimization

Optimizing Random Seed Points

$\delta_{X} \approx 0.009, \bar{\delta}_{X} \approx 0.469$
input

$\delta_{X} \approx 0.049, \bar{\delta}_{X} \approx 0.645$
$1 / 4$ iteration

Farthest-Point Optimization

Optimizing Random Seed Points

$$
\begin{aligned}
& \delta_{X} \approx 0.009, \bar{\delta}_{X} \approx 0.469 \\
& \text { input }
\end{aligned}
$$

Farthest-Point Optimization

Optimizing Random Seed Points

$$
\begin{aligned}
& \delta_{X} \approx 0.009, \bar{\delta}_{X} \approx 0.469 \\
& \text { input }
\end{aligned}
$$

Farthest-Point Optimization

Optimizing Random Seed Points

$\delta_{X} \approx 0.814, \bar{\delta}_{X} \approx 0.905$
2 iterations

Farthest-Point Optimization

Optimizing Random Seed Points

$$
\begin{aligned}
& \delta_{X} \approx 0.009, \bar{\delta}_{X} \approx 0.469 \\
& \text { input }
\end{aligned}
$$

Farthest-Point Optimization

Optimizing Random Seed Points

$$
\begin{aligned}
& \delta_{X} \approx 0.009, \bar{\delta}_{X} \approx 0.469 \\
& \text { input }
\end{aligned}
$$

Farthest-Point Optimization

Convergence

- Moving a point x maximizes by definition its local mindist δ_{x}
- Since $\bar{\delta}_{X} \propto \sum \delta_{x} \rightarrow \bar{\delta}_{X}$ increases strictly monotonically
- Stop when $\bar{\delta}_{X}^{\text {new }}-\bar{\delta}_{X}^{\text {old }}<\epsilon$ by machine precision

Farthest-Point Optimization

Convergence

- Moving a point x maximizes by definition its local mindist δ_{x}
- Since $\bar{\delta}_{X} \propto \sum \delta_{x} \rightarrow \bar{\delta}_{X}$ increases strictly monotonically
- Stop when $\bar{\delta}_{X}^{\text {new }}-\bar{\delta}_{X}^{\text {old }}<\epsilon$ by machine precision

Runtime Complexity

- Dominated by the search operation for the largest circumcircle
- Utilizing a binary tree to track the largest circumcircle yields total complexity of $\mathcal{O}(n \log n)$ for a full iteration
- Delaunay operations in our case typically $\mathcal{O}(1)$ [Erickson 2005]
- In the paper: local variant with $\mathcal{O}(n)$ per iteration but slower convergence

Farthest-Point Optimization

Spectral Analysis

Application

Image Plane Sampling

- High mindist yields high effective Nyquist frequency

Application

Image Plane Sampling

- FPO random points irregular but uniform
- Good trade-off between noise and coherent aliasing

Application

Image Plane Sampling

- FPO random points irregular but uniform
- Good trade-off between noise and coherent aliasing

Application

Image Plane Sampling

- FPO random points irregular but uniform
- Good trade-off between noise and coherent aliasing

Extension

Extension

Partition Algorithm

1024 points

- Want each subset as well as their union well-distributed
- Idea: partition input set into optimized subsets of equal size

Extension

Partition Algorithm

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Extension

Partition Algorithm

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Extension

Partition Algorithm

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Extension

Partition Algorithm

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Extension

Partition Algorithm

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Extension

Partition Algorithm

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Extension

Partition Algorithm

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Extension

Partition Algorithm

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Extension

Partition Algorithm

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Extension

Partition Algorithm

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Extension

Partition Algorithm

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Extension

Partition Algorithm

- For each subset: discrete space variant of main FPO algorithm
- Main difference: f now bound to a point $f \in X$
- Greedy approach: construct subsets sequentially

Extension

Partition Algorithm

Application

Trajectory Splitting

- Direct light estimation by trajectory splitting
- Precompute FPO points and necessary partitions
- Unbiased estimators by random shifts on unit torus

Application

Trajectory Splitting

Application

Trajectory Splitting

Conclusion

Conclusion

Farthest-Point Optimized Point Sets

- Uniform but irregular
- Higher mindist than previous methods
- Good trade-off between noise and coherent aliasing
- Optimal blue noise?

Conclusion

Farthest-Point Optimized Point Sets

- Uniform but irregular
- Higher mindist than previous methods
- Good trade-off between noise and coherent aliasing
- Optimal blue noise?

Partition Algorithm

- Good results but greedy approach leaves room for improvement

Conclusion

Farthest-Point Optimized Point Sets

- Uniform but irregular
- Higher mindist than previous methods
- Good trade-off between noise and coherent aliasing
- Optimal blue noise?

Partition Algorithm

- Good results but greedy approach leaves room for improvement

Future Work

- Points on bounded surfaces or triangulated domains
- Behavior in higher dimensions or for non-Euclidean metrics

Thank you for your attention.

References

- Balzer, M., Schlömer, T., and Deussen 0., 2009. Capacity-Constrained Point Distributions: A Variant of Lloyd's Method. ACM Trans. Graph. (Proceedings of SIGGRAPH 2009) 28, 3, 86:1-8.
- Cook, R. L., 1986.

Stochastic Sampling in Computer Graphics. Computer Graphics (Proc. of SIGGRAPH 86) 5, 1, 51-72.

- Du., Q., Faber, V., and Gunzburger, M., 1999. Centroidal Voronoi tessellations: Applications and Algorithms. SIAM Review 41, 4, 637-676.
- Dunbar, D., and Humphreys, G., 2006. A Spatial Data Structure for fast Poisson-Disk Sample Generation. ACM Trans. Graph. (Proceedings of SIGGRAPH 2006) 25, 3, 503-508.

References

- Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y. Y., 1997. The Farthest Point Strategy for Progressive Image Sampling. IEEE Trans. Image Process. 6, 9, 1305-1315.
- Erickson, Jeff, 2005.

Dense Point Sets Have Sparse Delaunay Triangulations. Discrete Comput. Geom. 1, 33, 83-115.

- Grünschloß, L., and Keller, A., 2009. (t, m, s)-nets and maximized minimum distance, part II. Monte Carlo and quasi-Monte Carlo Methods 2008, 395-409.
- Lagae, A., and Dutré, P., 2008. A Comparison of Methods for Generating Poisson-Disk Distributions. Computer Graphics Forum 27, 1, 114-129.

References

- Lloyd, S. P., 1982.

Least Square Quantization in PCM. IEEE Transactions on Information Theory, 28, 2, 129-137.

- Mitchell, D. P., 1991.

Spectrally Optimal Sampling for Distribution Ray Tracing. Computer Graphics (Proc. of SIGGRAPH 91), 157-164.

- Schmaltz, C., Gwosdek, P., Bruhn, A., and Weickert, J., 2010. Electrostatic Halftoning. Computer Graphics Forum 29, 8, 2313-2327.

