Adaptive Transparency

Marco Salvi Jefferson Montgomery Aaron Lefohn

Motivation

“Order-dependent transparency has always been a big
limitation for content creators & developers

— Restrictive art pipeline: no glass houses

— Even windows on cars & buildings can be painful

— Restrictive interaction between objects”

“Order-independent transparency is must going forward
— Big challenge! Gradual process”

“Five Major Challenges in Interactive Rendering”, SIGGRAPH 2010
Johan Andersson — DICE/EA

Motivation

Alpha-Blending Adaptive Transparency

Motivation

Scene courtesy of Valve Corporation.

Alpha-Test Adaptive Transparency

Motivation

Alpha-Test Adaptive Transparency

Alpha-Blending

N

N

Alpha-Blending

N

<

Alpha-Blending

N

N

Alpha-Blending

Alpha-Blending

~

Alpha-Blending

* Fast and stable/predictable performance

* No additional storage required

N

Co = O0Co
Cn = QnCn + (1 — an)Cn—l

A-buffer*

1) Render fragments color and depth in per-pixel lists

N

2) Per-pixel sort and composite fragments

Q to-the frame buffer

*[Carpenter 1984] [Yang et al. 2009]

A-buffer Limitations

* Poor & unstable performance, memory BW limited
 Unbounded memory requirements

Scene courtesy of Valve Corporation.

The Ideal Real-Time OIT Method

* High image quality

* High and stable performance

* Bounded memory usage

Alternative Compositing Method

* pixel color* = E CiaiViS(Zi)

fragments

*[Sintorn et al. 2009]

Visibility Function

 Models light absorption
* Product of step functions (thin blockers)

’I -

Transmittance

Distance from viewer (depth)

Adaptive Transparency

* Fixed size per-pixel visibility representation
— Store up to N step functions
— Lossy compression

 Render transparent geometry twice
1. Build per-pixel visibility function
2. Evaluate E c,a.vis(z,)

fragments

* To add a fragment f to we multiply all nodes located
behind it by (1-a,)

Transmittance

Transmittance

0.7

0.7

/ new fragment will be here

Distance from viewer (depth)

1 ﬂ x(l-a,)
o ./ /

Distance from viewer (depth)

* To compress visibility we remove the node
that generates the smallest area variation

1

T smallest area variation

v

0.7

0.7

GPU Implementation

e Store visibility in the frame buffer?

— Data update cannot be mapped to DX11 blend modes
— No RMW operations on the frame buffer

 Store visibility in a Read/Write buffer (UAV)?

— Cause data races

Proof-of-Concept Implementation

1) Render transparent fragments to per-pixel lists
— Same as A-buffer implementation

2) For each pixel: build an approximate visibility
function and use it to composite all transparent
fragments

— Full-screen pass guarantees atomicity

Result

SMOKE scene
-~ | 21 ms - 10.6 MFragment
| Max fragment per pixel: 312
2o | 30x faster than A-buffer
~ | 2.5x faster than Stoc. Transp.

S

HAIR scene
48 ms - 15.0 MFragment

Max fragment per pixel: 663

2X

FOREST scene

B8 8 ms - 6.0 MFragment
Sl Max fragment per pixel: 45
7x faster than A-buffer

40x faster than A-buffer
faster than Stoc. Transp.

Scene‘courtesy of Valve Corporation. 2x faster than Stoc. Transp.

Model courtesy o

Results
* Up to 40x faster than A-buffer

* High image quality and scalable performance

— Easy to trade-off 1Q for performance by tuning node
count

 Works on any type of transparent geometry
— Foliage, particles, hair, glass, etc.

Future Work

* |[nvestigate bounded memory implementations
— Per-pixel locks? New frame-buffer format?

* Better visibility data compression

— Reduce MSAA impact on memory requirements

Acknowledgements

Special thanks to Craig Kolb, Matt Pharr, Charles Lingle and
Elliot Garbus for supporting this work.

Jason Mitchell and Wade Schinn at Valve Software for the
assets from Left-for-Dead-2

Cem Yuksel (Cornell University) for the hair model

Q&A

pre-print: http://intel.ly/at hpgll
source code: http://intel.ly/aoit gdc

twitter: @marcosalvi
e-mail: marco.salvi@intel.com

blog: http://pixelstoomany.wordpress.com

Bibliography

PORTER, T., AND DUFF, T. 1984. “Compositing digital images.” SIGGRAPH Comput. Graph. 18, 3,
253-259.

CARPENTER, L. 1984. “The A -buffer, an antialiased hidden surface method.” SIGGRAPH Comput.
Graph. 18, 3, 103-108.

SINTORN, E., AND ASSARSON, U. 2009. “Hair self shadowing and transparency depth ordering using
occupancy maps.” In 13D ’09: Proceedings of the 2009 Symposium on Interactive 3D Graphics and
Games, 67-74

PATNEY, A., TZENG, S., AND OWENS, J. D. 2010. “Fragment parallel composite and filter.” Computer
Graphics Forum (Proceedings of EGSR 2010) 29, 4 (June), 1251-1258.

YANG, J., HENSLEY, J., GR"U 547 N, H., AND THIBIEROZ, N. 2010. “Real-time concurrent linked list
construction on the gpu.” Computer Graphics Forum (Proceedings of EGSR 2010) 29, 4 (June),

SALVI, M., VIDIMCE, K., LAURITZEN, A., AND LEFOHN, A. 2010. “Adaptive volumetric shadow maps.”
Computer Graphics Forum (Proceedings of EGSR 2010) 29, 4 (June), 1289-1296.

Backup

Scene courtesy of Valve Corporation.

Transmittance

Transmittance

* |dea: Save bandwidth by working with an
approximate visibility function

T
‘—-—...‘‘_\ﬂ 200+ steps
—k
0 Distance from viewer (depth)
) !
32 steps
0

Distance from viewer (depth)

