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Motivation

“Order-dependent transparency has always been a big
limitation for content creators & developers

— Restrictive art pipeline: no glass houses

— Even windows on cars & buildings can be painful

— Restrictive interaction between objects”

“Order-independent transparency is must going forward
— Big challenge! Gradual process”

“Five Major Challenges in Interactive Rendering”, SIGGRAPH 2010
Johan Andersson — DICE/EA
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Alpha-Blending Adaptive Transparency
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Scene courtesy of Valve Corporation.
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Alpha-Blending

* Fast and stable/predictable performance

* No additional storage required

N

Co = O0Co
Cn = QnCn + (1 — an)Cn—l




A-buffer*

1) Render fragments color and depth in per-pixel lists

N

2) Per-pixel sort and composite fragments

Q to-the frame buffer

*[Carpenter 1984] [Yang et al. 2009]



A-buffer Limitations

* Poor & unstable performance, memory BW limited
 Unbounded memory requirements

Scene courtesy of Valve Corporation.



The Ideal Real-Time OIT Method

* High image quality

* High and stable performance

* Bounded memory usage



Alternative Compositing Method

* pixel color* = E CiaiViS(Zi)

fragments

*[Sintorn et al. 2009]



Visibility Function

 Models light absorption
* Product of step functions (thin blockers)
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Transmittance

Distance from viewer (depth)



Adaptive Transparency

* Fixed size per-pixel visibility representation
— Store up to N step functions
— Lossy compression

 Render transparent geometry twice
1. Build per-pixel visibility function
2. Evaluate E c,a.vis(z,)

fragments



* To add a fragment f to we multiply all nodes located
behind it by (1-a,)
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* To compress visibility we remove the node
that generates the smallest area variation
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GPU Implementation

e Store visibility in the frame buffer?

— Data update cannot be mapped to DX11 blend modes
— No RMW operations on the frame buffer

 Store visibility in a Read/Write buffer (UAV)?

— Cause data races



Proof-of-Concept Implementation

1) Render transparent fragments to per-pixel lists
— Same as A-buffer implementation

2) For each pixel: build an approximate visibility
function and use it to composite all transparent
fragments

— Full-screen pass guarantees atomicity



Result

SMOKE scene
-~ | 21 ms - 10.6 MFragment
| Max fragment per pixel: 312
2o | 30x faster than A-buffer
~ | 2.5x faster than Stoc. Transp.

S

HAIR scene
48 ms - 15.0 MFragment

Max fragment per pixel: 663

2X

FOREST scene

B8 8 ms - 6.0 MFragment
Sl Max fragment per pixel: 45
7x faster than A-buffer

40x faster than A-buffer
faster than Stoc. Transp.

Scene‘courtesy of Valve Corporation. 2x faster than Stoc. Transp.

Model courtesy o




Results
* Up to 40x faster than A-buffer

* High image quality and scalable performance

— Easy to trade-off 1Q for performance by tuning node
count

 Works on any type of transparent geometry
— Foliage, particles, hair, glass, etc.



Future Work

* |[nvestigate bounded memory implementations
— Per-pixel locks? New frame-buffer format?

* Better visibility data compression

— Reduce MSAA impact on memory requirements
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Q&A

pre-print: http://intel.ly/at hpgll
source code: http://intel.ly/aoit gdc

twitter: @marcosalvi
e-mail: marco.salvi@intel.com

blog: http://pixelstoomany.wordpress.com
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Scene courtesy of Valve Corporation.




Transmittance

Transmittance

* |dea: Save bandwidth by working with an
approximate visibility function
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