Randomized Selection on the GPU

Laura Monroe, Joanne Wendelberger, Sarah Michalak Los Alamos National Laboratory

High Performance Graphics 2011
August 6, 2011

Top k Selection on GPU

- Output the top k keys and values from an unordered list of length n
- Top k is in terms of key ordering
- Our motivating problem is from radio-astronomy
- Contributions of this work
- Speedups of 1.5-3x over best-known GPU selection, and $3-6 x$ over Thrust sort
- Selections on lists up to $4 x$ longer than Thrust sort
- New method of selecting pivots in this randomized select

Motivating problem

- CLEAN on GPU
- Used in radio-astronomy to remove noise from images generated by multiple antennas
- Fast CLEAN algorithm (Clark)
- Chooses the k brightest pixels in the
 image, and saves them to a clean image
- Convolves the k pixels with the point-spread function via a Fast Fourier Transform (FFT), a convolution, and an inverse FFT
- Subtracts the result from the base image to get residual image
- This process iterates until all pixels in the residual image reach a threshold noise value. The clean image is then accepted.

Images © Bill Junor, LANL

CLEAN Constraints

- Choice of GPU for CLEAN
- Good FLOPS/watt ratio for remote telescope locations
- Have fast FFTs on GPU, need fast selection
- Choice of GPU for selection implementation
- Transfer of big images a performance killer
- Residual image changes at each of the many iterations in CLEAN
- If FFTs on GPU but selection on CPU, big image transfer each step
- CLEAN requirements for selection
- Requires very general version of select
- Need both keys and values
- Keys (pixel brightness) are what is ordered and selected upon
- Values (pixel locations) are what is needed for CLEAN
- Need all k keys and values, not enough to grab just k th

Some Previous Work on Selection

Selection is a more general CS problem.

- Serial Lazy Select (Motwani and Raghavan 1995)
- Serial Quickselect (Bleloch 1996)
- Parallel Randomized Selection (Bader 2004)
- GPU Select via Explicit Construction (Govindaraju 2004)
- GPU Select via Minimization of a Complex Function (Beliakov 2011)
- Select via a Sort (e.g., Thrust)
- Does more than just the select
- Good if the list never changes
- Los Alamos

NATIONAL LABORATORY

Randomized Selection Algorithm

- Choose two pivots for a partition so that:
- The k th element is contained in the middle bin with probability p_{k}
- The middle bin is small relative to the list

LA-UR 11-04829		
Pivot 0	Pivot 1	

Randomized Selection Algorithm

- Choose two pivots for a partition so that:
- The k th element is contained in the middle bin with probability p_{k}
- The middle bin is small relative to the list
- Partition the list

Pivot 0	Pivot 1	
LA-UR 11-04829		

Randomized Selection Algorithm

- Choose two pivots for a partition so that:
- The k th element is contained in the middle bin with probability p_{k}
- The middle bin is small relative to the list
- Partition the list
- First bin holds elements with keys < Pivot 0

First Bin keys < Pivot 0		
Pivot 0		

Randomized Selection Algorithm

- Choose two pivots for a partition so that:
- The k th element is contained in the middle bin with probability p_{k}
- The middle bin is small relative to the list
- Partition the list
- First bin holds elements with keys < Pivot 0
- Middle holds elements with keys between Pivot 0 and Pivot 1

First Bin keys < Pivot 0	Middle Bin PA-UR 11-04829 $0 \leq$ keys \leq Pivot 1	
Pivot 0	Pivot 1	

Randomized Selection Algorithm

- Choose two pivots for a partition so that:
- The k th element is contained in the middle bin with probability p_{k}
- The middle bin is small relative to the list
- Partition the list
- First bin holds elements with keys < Pivot 0
- Middle holds elements with keys between Pivot 0 and Pivot 1
- Last holds elements with keys > Pivot 1

First Bin keys < Pivot 0	Middle Bin Pivot $0 \leq$ keys \leq Pivot 1	Last Bin keys > Pivot 1
Pivot 0		

Randomized Selection Algorithm

- Choose two pivots for a partition so that:
- The k th element is contained in the middle bin with probability p_{k}
- The middle bin is small relative to the list
- Partition the list
- First bin holds elements with keys < Pivot 0
- Middle holds elements with keys between Pivot 0 and Pivot 1
- Last holds elements with keys > Pivot 1
- Is k th in middle bin?
- Yes, if number in first bin $<k$ and number in first and middle bins $\geq k$

First Bin keys < Pivot 0	Middle Bin Pivot $0 \leq$ keys \leq Pivot 1	$\begin{aligned} & \text { Last Bin } \\ & \text { keys }>\text { Pivot } 1 \end{aligned}$
Pivot 0		

Randomized Selection Algorithm

- Choose two pivots for a partition so that:
- The k th element is contained in the middle bin with probability p_{k}
- The middle bin is small relative to the list
- Partition the list
- First bin holds elements with keys < Pivot 0
- Middle holds elements with keys between Pivot 0 and Pivot 1
- Last holds elements with keys > Pivot 1
- Is k th in middle bin?
- Yes, if number in first bin $<k$ and number in first and middle bins $>k$
- If not, shift pivots in appropriate direction and iterate until it is

Randomized Selection Algorithm

- Choose two pivots for a partition so that:
- The k th element is contained in the middle bin with probability p_{k}
- The middle bin is small relative to the list
- Partition the list
- First bin holds elements with keys < Pivot 0
- Middle holds elements with keys between Pivot 0 and Pivot 1
- Last holds elements with keys > Pivot 1
- Is kth in middle bin?
- Yes, if number in first bin $<k$ and number in first and middle bins $>k$
- If not, shift in appropriate direction and iterate until it is
- Select on the middle bin (we used select-via-sort)

First Bin keys < Pivot 0	Middlle Bin Pivot 0 \leq keys \leq Pivot 1	Last Bin keys > Pivot 1
Pivot 0	Pivot 1	
LA-UR 11-00829		

Randomized Selection Algorithm

- Choose two pivots for a partition so that:
- The k th element is contained in the middle bin with probability p_{k}
- The middle bin is small relative to the list
- Partition the list
- First bin holds elements with keys < Pivot 0
- Middle holds elements with keys between Pivot 0 and Pivot 1
- Last holds elements with keys > Pivot 1
- Is k th in middle bin?
- Yes, if number in first bin $<k$ and number in first and middle bins $>k$
- If not, shift in appropriate direction and iterate until it is
- Select on the middle bin (we used select-via-sort)

Algorithm observations

"Essentially a reduced selection
-Selection is on a smaller middle bin
-Pivot choice is heart of algorithm
-The action is in reads-to/writes-from shared memory
-The partition takes most of the time because of this
-Everything on the GPU except
-The overall control
-The probability sums in the pivot choice
-For convenience used GSL on CPU (validated, has numerical tricks)

Guess and check

-This is a Las Vegas algorithm.
-Las Vegas algorithm = probabilistic, but gives correct result -An example of stochastic optimization
-Relatively slow to directly select but
-Fast to calculate the guess
-Fast to do the calculations, given the guess
-Fast and easy to check correctness of pivot guess
-Can guess pivots with arbitrary accuracy
-Guess + check faster than direct calculation

- Los Alamos

NATIONAL LABORATOR
LA-UR 11-04829

Parameters

- n, the list length
- This is limited by the amount of global memory
- We implemented only powers of 2, but can generalize
- k, the number of elements to be selected
- Varies between 1 and n
- Gives rise to the quantile k / n
- Quantile k / n allows comparison between different n
- p_{k}, the desired probability that the middle bin contains the k th element
- Larger p_{k} implies fewer repetitions, but a larger final selection

Los Alamos
NATIONAL LABORATORY

Algorithm flow chart

Pivot selection

- Randomly select some number (numSplitters) of elements from the list and call these splitters
- We empirically chose numSplitters $=8^{*} \sqrt{ } n$, to balance first and last sorts
- Sort the splitters
- Imagine that the list is partitioned into buckets defined by these splitters
- Each bucket has very roughly "more or less" the same number of elements
- This has the effect of flattening the distribution and allows one to reason probabilistically about the number of elements in each
- Los Alamos

NATIONAL LABORATORY
LA-UR 11-04829

Pivot selection

- The probability that the k th is in the ith bucket is approximately

$$
\text { C(numSplitters, i) }(k / n)^{i}(1-(k / n))^{n u m S p l i t t e r s-i}
$$

- Binomial distribution approximation
- numSplitters random trials
- Success is defined as "the kth key < the splitter tried"
- Success has probability k / n
- Approximation may be weak for kth key outside splitters, but impact minimal if probabilities of end buckets small
- Starting at the bucket most likely to hold the k th, $k /(n /($ numSplitters+1)), add probabilities, incrementing buckets on each side, until the desired probability is exceeded.
- Can do this as buckets are not overlapping
- Binomial distribution is approximated by normal

Query and Partition kernels

- First pass -- counting loop
- Count thread contributions to first and middle bin
- Scan-add (prefix-sum) these for offsets
- Compare total elements falling into the first and into the first and middle to see if the k th falls into the middle
- If not, then shift the pivots in the appropriate direction and repeat
- Second pass - partition
- Once you have good pivots, partition and write
- No atomics
- Closely coupled kernels account for most of the time spent
LOS Alamos
LA-UR 11-04829

Coalesced vs. uncoalesced writes in partition-and-write kernel

_ coalesced topk \longrightarrow coalesced kernel _ uncoalesced topk \longrightarrow uncoalesced kernel

GPU impact on algorithm

- Parallelism a great strength
- Ran on up to 64 million threads for the partition kernels
- Small amount of fast memory near processors
- Bandwidth gain in using coalesced writes
- But to do these coalesced writes also need to use more shared memory
- SIMD, divergent threads during partition
- Super-scalar technique in (Sanders and Winkel 2004) didn't help for our two-level tree
- Slow reads across PCIe bus
- If calculation is on GPU, best to select there too
- Limited global memory on GPU
- Limits size of list that can be processed

Los Alamos
NATIONAL LABORATORY
LA-UR 11-04829

Verification

- This is an example of stochastic optimization
- If the wrong pivots are chosen, the answer will still be correct but the timing will be slower
- We verified the code statistically as part of our experimentation
- Did a series of experiments consisting of 10K runs each, and compared the observed number of times the k th was in different buckets with the corresponding calculated bucket probabilities for different values of k
- Results were consistent with correct implementation of the algorithm

NATIONAL LABORATORY
LA-UR 11-04829

Experimental results

- Algorithms compared
- This randomized top k selection
- Thrust-based select-via-sort
- Direct construction of $k t h$ element (Govindaraju 2004)
- Construction by minimization of a convex function (Beliakov 2011)
- Data compared
- Real radio-astronomy data
- Random data
- In-order and backward-order data
- Data with repetition
- All integer
- Platforms
- NVIDIA Quadro 6000 (mostly), Quadro 5000, GTX 285, 8800 GT

1.5-3x faster than best selections 3-6x faster than Thrust select-via-sort

NATIONAL LABORATORY
NNS:
LA-UR 11-04829

Handles list lengths $n 2-4 x$ bigger than Thrust select-via-sort

GPU	global memory	$\max \boldsymbol{n}$	max $\boldsymbol{k} / \boldsymbol{n}$	max \boldsymbol{n}, no \boldsymbol{k} restriction	thrust $\max \boldsymbol{n}$
$\mathbf{6 0 0 0}$	$\mathbf{6 G B}$	2^{29}	0.34	2^{28}	2^{28}
$\mathbf{5 0 0 0}$	2.5 GB	2^{28}	0.53	2^{27}	2^{26}
$\mathbf{2 8 5}$	1 GB	2^{27}	0.13	2^{26}	2^{25}

- Los Alamos

Timings in terms of list length n

Los Alamos
NATIONAL LABORATORY
LA-UR 11-04829

Real radio-astronomy data closely tracks random data

NATIONAL LABORATORY

LA-UR 11-04829

When is this algorithm slow?

- We identified one case when this is slower than select-via-sort
- Lots of repetition AND
- The k th key occurs near the repetition
- In that case, the select-via-sort can be faster
- We found the break-even to be when between half and three-quarters of the elements repeat (and the k th happens to be one of them)
- Because nearly a full sort is done in the final select, along with all of the other work

Timings for different GPUs

- Los Alamos

NATIONAL LABORATORY

LA-UR 11-04829

Probabilities p_{k} give similar timings when $\mathrm{p}_{\mathrm{k}}>30 \%$

LA-UR 11-04829

Kernel timings, $n=2^{26}$

LA-UR 11-04829

If you're on the GPU, select there too

 Same $n=2^{26}$ run as previous slide PCIe transfer time overwhelms the select time

Conclusions

- We have shown a fast randomized selection on the GPU using a Las Vegas algorithm.
- Faster than other GPU-based selects we've examined
- Even those that do less (i.e., only grab the k th, only grab keys)
- Select on the GPU when you're already there
- Use this randomized select if
- The list changes between calls to select
- You want longer lists than a sort handles on your GPU
- Use select-via-sort only if
- You are selecting on the same list many times
- That's the added value of doing a sort first
- You know the series of lists have more than half repeated keys and know that the k th is one of them most of the time

NATIONAL LABORATORY

