
HPC HPC-5 System Integration
High Performance Computing

Randomized Selection on the GPU

Laura Monroe, Joanne Wendelberger, Sarah Michalak
Los Alamos National Laboratory

High Performance Graphics 2011
August 6, 2011

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Top k Selection on GPU
  Output the top k keys and values from an

unordered list of length n
  Top k is in terms of key ordering

  Our motivating problem is from radio-astronomy

  Contributions of this work
  Speedups of 1.5-3x over best-known GPU selection, and

3-6x over Thrust sort
  Selections on lists up to 4x longer than Thrust sort
  New method of selecting pivots in this randomized select

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Motivating problem
  CLEAN on GPU

  Used in radio-astronomy to remove
noise from images generated by
multiple antennas

  Fast CLEAN algorithm (Clark)
•  Chooses the k brightest pixels in the

image, and saves them to a clean image
•  Convolves the k pixels with the point-spread

function via a Fast Fourier Transform (FFT), a
convolution, and an inverse FFT

•  Subtracts the result from the base image to
get residual image

•  This process iterates until all pixels in the
residual image reach a threshold noise value.
The clean image is then accepted. Images © Bill Junor, LANL

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

CLEAN Constraints
  Choice of GPU for CLEAN

  Good FLOPS/watt ratio for remote telescope locations
  Have fast FFTs on GPU, need fast selection

  Choice of GPU for selection implementation
  Transfer of big images a performance killer

•  Residual image changes at each of the many iterations in CLEAN
•  If FFTs on GPU but selection on CPU, big image transfer each step

  CLEAN requirements for selection
  Requires very general version of select
  Need both keys and values

•  Keys (pixel brightness) are what is ordered and selected upon
•  Values (pixel locations) are what is needed for CLEAN

  Need all k keys and values, not enough to grab just kth

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Some Previous Work on Selection
Selection is a more general CS problem.
  Serial Lazy Select (Motwani and Raghavan 1995)
  Serial Quickselect (Bleloch 1996)
  Parallel Randomized Selection (Bader 2004)
  GPU Select via Explicit Construction (Govindaraju

2004)
  GPU Select via Minimization of a Complex

Function (Beliakov 2011)
  Select via a Sort (e.g., Thrust)

  Does more than just the select
  Good if the list never changes

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

Pivot 0 Pivot 1
LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list

Pivot 0 Pivot 1
LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0

Pivot 0 Pivot 1

First Bin
 keys < Pivot 0

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0
  Middle holds elements with keys between Pivot 0 and Pivot 1

Pivot 0 Pivot 1

First Bin
 keys < Pivot 0

Middle Bin
Pivot 0 < keys < Pivot 1

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0
  Middle holds elements with keys between Pivot 0 and Pivot 1
  Last holds elements with keys > Pivot 1

Pivot 0 Pivot 1

First Bin
 keys < Pivot 0

Last Bin
keys > Pivot 1

Middle Bin
Pivot 0 < keys < Pivot 1

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0
  Middle holds elements with keys between Pivot 0 and Pivot 1
  Last holds elements with keys > Pivot 1

  Is kth in middle bin?
  Yes, if number in first bin < k and number in first and middle bins > k

Pivot 0 Pivot 1

First Bin
 keys < Pivot 0

Last Bin
keys > Pivot 1

Middle Bin
Pivot 0 < keys < Pivot 1

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0
  Middle holds elements with keys between Pivot 0 and Pivot 1
  Last holds elements with keys > Pivot 1

  Is kth in middle bin?
  Yes, if number in first bin < k and number in first and middle bins > k
  If not, shift pivots in appropriate direction and iterate until it is

Pivot 0 (was Pivot 1) Pivot 1 was Pivot 0
LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0
  Middle holds elements with keys between Pivot 0 and Pivot 1
  Last holds elements with keys > Pivot 1

  Is kth in middle bin?
  Yes, if number in first bin < k and number in first and middle bins > k
  If not, shift in appropriate direction and iterate until it is

  Select on the middle bin (we used select-via-sort)

Pivot 0 Pivot 1

First Bin
 keys < Pivot 0

Last Bin
keys > Pivot 1

Middle Bin
Pivot 0 < keys < Pivot 1

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0
  Middle holds elements with keys between Pivot 0 and Pivot 1
  Last holds elements with keys > Pivot 1

  Is kth in middle bin?
  Yes, if number in first bin < k and number in first and middle bins > k
  If not, shift in appropriate direction and iterate until it is

  Select on the middle bin (we used select-via-sort)

  Write out the selected part of middle + the first

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Algorithm observations
 Essentially a reduced selection

 Selection is on a smaller middle bin

 Pivot choice is heart of algorithm
 The action is in reads-to/writes-from shared memory

 The partition takes most of the time because of this
 Everything on the GPU except

 The overall control
 The probability sums in the pivot choice

 For convenience used GSL on CPU (validated, has numerical tricks)

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Guess and check
 This is a Las Vegas algorithm.

 Las Vegas algorithm = probabilistic, but gives correct result
 An example of stochastic optimization

 Relatively slow to directly select but

 Fast to calculate the guess
 Fast to do the calculations, given the guess
 Fast and easy to check correctness of pivot guess

 Can guess pivots with arbitrary accuracy

 Guess + check faster than direct calculation

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Parameters
  n, the list length

  This is limited by the amount of global memory
  We implemented only powers of 2, but can generalize

  k, the number of elements to be selected
  Varies between 1 and n
  Gives rise to the quantile k/n
  Quantile k/n allows comparison between different n

  pk, the desired probability that the middle bin
contains the kth element
  Larger pk implies fewer repetitions, but a larger final

selection

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Algorithm flow chart

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Pivot selection
  Randomly select some number (numSplitters) of

elements from the list and call these splitters
  We empirically chose numSplitters = 8*√n, to balance

first and last sorts

  Sort the splitters
  Imagine that the list is partitioned into buckets

defined by these splitters
  Each bucket has very roughly “more or less” the same

number of elements

  This has the effect of flattening the distribution
and allows one to reason probabilistically about
the number of elements in each

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Pivot selection
  The probability that the kth is in the ith bucket is approximately

C(numSplitters, i) (k/n)i (1- (k/n))numSplitters-i
  Binomial distribution approximation

  numSplitters random trials
  Success is defined as “the kth key < the splitter tried”
  Success has probability k/n
  Approximation may be weak for kth key outside splitters, but

impact minimal if probabilities of end buckets small
  Starting at the bucket most likely to hold the kth,

k/(n/(numSplitters+1)), add probabilities, incrementing
buckets on each side, until the desired probability is exceeded.

  Can do this as buckets are not overlapping
  Binomial distribution is approximated by normal

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Query and Partition kernels
  First pass -- counting loop

  Count thread contributions to first and middle bin
  Scan-add (prefix-sum) these for offsets
  Compare total elements falling into the first and into the

first and middle to see if the kth falls into the middle
  If not, then shift the pivots in the appropriate direction

and repeat

  Second pass - partition
  Once you have good pivots, partition and write

  No atomics
  Closely coupled kernels account for most of the

time spent

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Coalesced vs. uncoalesced writes
in partition-and-write kernel

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

GPU impact on algorithm
  Parallelism a great strength

  Ran on up to 64 million threads for the partition kernels

  Small amount of fast memory near processors
  Bandwidth gain in using coalesced writes

  But to do these coalesced writes also need to use more shared
memory

  SIMD, divergent threads during partition
  Super-scalar technique in (Sanders and Winkel 2004) didn’t help for

our two-level tree

  Slow reads across PCIe bus
  If calculation is on GPU, best to select there too

  Limited global memory on GPU
  Limits size of list that can be processed

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Verification
  This is an example of stochastic optimization

  If the wrong pivots are chosen, the answer will still be
correct but the timing will be slower

  We verified the code statistically as part of our
experimentation

  Did a series of experiments consisting of 10K runs
each, and compared the observed number of times
the kth was in different buckets with the
corresponding calculated bucket probabilities for
different values of k

  Results were consistent with correct implementation
of the algorithm

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Experimental results
  Algorithms compared

  This randomized top k selection
  Thrust-based select-via-sort
  Direct construction of kth element (Govindaraju 2004)
  Construction by minimization of a convex function (Beliakov 2011)

  Data compared
  Real radio-astronomy data
  Random data
  In-order and backward-order data
  Data with repetition
  All integer

  Platforms
  NVIDIA Quadro 6000 (mostly), Quadro 5000, GTX 285, 8800 GT

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

1.5-3x faster than best selections
3-6x faster than Thrust select-via-sort

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Handles list lengths n 2-4x bigger
than Thrust select-via-sort

GPU global
memory max n max

k/n

max n,
no k

restriction

thrust
max n

6000 6 GB 229 0.34 228 228

5000 2.5 GB 228 0.53 227 226

285 1 GB 227 0.13 226 225

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Timings in terms of list length n

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Real radio-astronomy data closely
tracks random data

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

When is this algorithm slow?
  We identified one case when this is slower than

select-via-sort
  Lots of repetition AND
  The kth key occurs near the repetition

  In that case, the select-via-sort can be faster
  We found the break-even to be when between

half and three-quarters of the elements repeat
(and the kth happens to be one of them)
  Because nearly a full sort is done in the final select,

along with all of the other work

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Timings for different GPUs

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Probabilities pk give similar
timings when pk > 30%

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Kernel timings, n = 226

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

If you’re on the GPU, select there too
Same n=226 run as previous slide

PCIe transfer time overwhelms the select time

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Conclusions
  We have shown a fast randomized selection on the GPU

using a Las Vegas algorithm.
  Faster than other GPU-based selects we’ve examined

•  Even those that do less (i.e., only grab the kth, only grab keys)

  Select on the GPU when you’re already there
  Use this randomized select if

  The list changes between calls to select
  You want longer lists than a sort handles on your GPU

  Use select-via-sort only if
  You are selecting on the same list many times

•  That’s the added value of doing a sort first

  You know the series of lists have more than half repeated keys
and know that the kth is one of them most of the time

LA-UR 11-04829

