
HPC HPC-5 System Integration
High Performance Computing

Randomized Selection on the GPU

Laura Monroe, Joanne Wendelberger, Sarah Michalak
Los Alamos National Laboratory

High Performance Graphics 2011
August 6, 2011

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Top k Selection on GPU
  Output the top k keys and values from an

unordered list of length n
  Top k is in terms of key ordering

  Our motivating problem is from radio-astronomy

  Contributions of this work
  Speedups of 1.5-3x over best-known GPU selection, and

3-6x over Thrust sort
  Selections on lists up to 4x longer than Thrust sort
  New method of selecting pivots in this randomized select

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Motivating problem
  CLEAN on GPU

  Used in radio-astronomy to remove
noise from images generated by
multiple antennas

  Fast CLEAN algorithm (Clark)
•  Chooses the k brightest pixels in the

image, and saves them to a clean image
•  Convolves the k pixels with the point-spread

function via a Fast Fourier Transform (FFT), a
convolution, and an inverse FFT

•  Subtracts the result from the base image to
get residual image

•  This process iterates until all pixels in the
residual image reach a threshold noise value.
The clean image is then accepted. Images © Bill Junor, LANL

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

CLEAN Constraints
  Choice of GPU for CLEAN

  Good FLOPS/watt ratio for remote telescope locations
  Have fast FFTs on GPU, need fast selection

  Choice of GPU for selection implementation
  Transfer of big images a performance killer

•  Residual image changes at each of the many iterations in CLEAN
•  If FFTs on GPU but selection on CPU, big image transfer each step

  CLEAN requirements for selection
  Requires very general version of select
  Need both keys and values

•  Keys (pixel brightness) are what is ordered and selected upon
•  Values (pixel locations) are what is needed for CLEAN

  Need all k keys and values, not enough to grab just kth

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Some Previous Work on Selection
Selection is a more general CS problem.
  Serial Lazy Select (Motwani and Raghavan 1995)
  Serial Quickselect (Bleloch 1996)
  Parallel Randomized Selection (Bader 2004)
  GPU Select via Explicit Construction (Govindaraju

2004)
  GPU Select via Minimization of a Complex

Function (Beliakov 2011)
  Select via a Sort (e.g., Thrust)

  Does more than just the select
  Good if the list never changes

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

Pivot 0 Pivot 1
LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list

Pivot 0 Pivot 1
LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0

Pivot 0 Pivot 1

First Bin
 keys < Pivot 0

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0
  Middle holds elements with keys between Pivot 0 and Pivot 1

Pivot 0 Pivot 1

First Bin
 keys < Pivot 0

Middle Bin
Pivot 0 < keys < Pivot 1

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0
  Middle holds elements with keys between Pivot 0 and Pivot 1
  Last holds elements with keys > Pivot 1

Pivot 0 Pivot 1

First Bin
 keys < Pivot 0

Last Bin
keys > Pivot 1

Middle Bin
Pivot 0 < keys < Pivot 1

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0
  Middle holds elements with keys between Pivot 0 and Pivot 1
  Last holds elements with keys > Pivot 1

  Is kth in middle bin?
  Yes, if number in first bin < k and number in first and middle bins > k

Pivot 0 Pivot 1

First Bin
 keys < Pivot 0

Last Bin
keys > Pivot 1

Middle Bin
Pivot 0 < keys < Pivot 1

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0
  Middle holds elements with keys between Pivot 0 and Pivot 1
  Last holds elements with keys > Pivot 1

  Is kth in middle bin?
  Yes, if number in first bin < k and number in first and middle bins > k
  If not, shift pivots in appropriate direction and iterate until it is

Pivot 0 (was Pivot 1) Pivot 1 was Pivot 0
LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0
  Middle holds elements with keys between Pivot 0 and Pivot 1
  Last holds elements with keys > Pivot 1

  Is kth in middle bin?
  Yes, if number in first bin < k and number in first and middle bins > k
  If not, shift in appropriate direction and iterate until it is

  Select on the middle bin (we used select-via-sort)

Pivot 0 Pivot 1

First Bin
 keys < Pivot 0

Last Bin
keys > Pivot 1

Middle Bin
Pivot 0 < keys < Pivot 1

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Randomized Selection Algorithm
  Choose two pivots for a partition so that:

  The kth element is contained in the middle bin with probability pk
  The middle bin is small relative to the list

  Partition the list
  First bin holds elements with keys < Pivot 0
  Middle holds elements with keys between Pivot 0 and Pivot 1
  Last holds elements with keys > Pivot 1

  Is kth in middle bin?
  Yes, if number in first bin < k and number in first and middle bins > k
  If not, shift in appropriate direction and iterate until it is

  Select on the middle bin (we used select-via-sort)

  Write out the selected part of middle + the first

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Algorithm observations
 Essentially a reduced selection

 Selection is on a smaller middle bin

 Pivot choice is heart of algorithm
 The action is in reads-to/writes-from shared memory

 The partition takes most of the time because of this
 Everything on the GPU except

 The overall control
 The probability sums in the pivot choice

 For convenience used GSL on CPU (validated, has numerical tricks)

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Guess and check
 This is a Las Vegas algorithm.

 Las Vegas algorithm = probabilistic, but gives correct result
 An example of stochastic optimization

 Relatively slow to directly select but

 Fast to calculate the guess
 Fast to do the calculations, given the guess
 Fast and easy to check correctness of pivot guess

 Can guess pivots with arbitrary accuracy

 Guess + check faster than direct calculation

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Parameters
  n, the list length

  This is limited by the amount of global memory
  We implemented only powers of 2, but can generalize

  k, the number of elements to be selected
  Varies between 1 and n
  Gives rise to the quantile k/n
  Quantile k/n allows comparison between different n

  pk, the desired probability that the middle bin
contains the kth element
  Larger pk implies fewer repetitions, but a larger final

selection

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Algorithm flow chart

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Pivot selection
  Randomly select some number (numSplitters) of

elements from the list and call these splitters
  We empirically chose numSplitters = 8*√n, to balance

first and last sorts

  Sort the splitters
  Imagine that the list is partitioned into buckets

defined by these splitters
  Each bucket has very roughly “more or less” the same

number of elements

  This has the effect of flattening the distribution
and allows one to reason probabilistically about
the number of elements in each

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Pivot selection
  The probability that the kth is in the ith bucket is approximately

C(numSplitters, i) (k/n)i (1- (k/n))numSplitters-i
  Binomial distribution approximation

  numSplitters random trials
  Success is defined as “the kth key < the splitter tried”
  Success has probability k/n
  Approximation may be weak for kth key outside splitters, but

impact minimal if probabilities of end buckets small
  Starting at the bucket most likely to hold the kth,

k/(n/(numSplitters+1)), add probabilities, incrementing
buckets on each side, until the desired probability is exceeded.

  Can do this as buckets are not overlapping
  Binomial distribution is approximated by normal

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Query and Partition kernels
  First pass -- counting loop

  Count thread contributions to first and middle bin
  Scan-add (prefix-sum) these for offsets
  Compare total elements falling into the first and into the

first and middle to see if the kth falls into the middle
  If not, then shift the pivots in the appropriate direction

and repeat

  Second pass - partition
  Once you have good pivots, partition and write

  No atomics
  Closely coupled kernels account for most of the

time spent

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Coalesced vs. uncoalesced writes
in partition-and-write kernel

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

GPU impact on algorithm
  Parallelism a great strength

  Ran on up to 64 million threads for the partition kernels

  Small amount of fast memory near processors
  Bandwidth gain in using coalesced writes

  But to do these coalesced writes also need to use more shared
memory

  SIMD, divergent threads during partition
  Super-scalar technique in (Sanders and Winkel 2004) didn’t help for

our two-level tree

  Slow reads across PCIe bus
  If calculation is on GPU, best to select there too

  Limited global memory on GPU
  Limits size of list that can be processed

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Verification
  This is an example of stochastic optimization

  If the wrong pivots are chosen, the answer will still be
correct but the timing will be slower

  We verified the code statistically as part of our
experimentation

  Did a series of experiments consisting of 10K runs
each, and compared the observed number of times
the kth was in different buckets with the
corresponding calculated bucket probabilities for
different values of k

  Results were consistent with correct implementation
of the algorithm

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Experimental results
  Algorithms compared

  This randomized top k selection
  Thrust-based select-via-sort
  Direct construction of kth element (Govindaraju 2004)
  Construction by minimization of a convex function (Beliakov 2011)

  Data compared
  Real radio-astronomy data
  Random data
  In-order and backward-order data
  Data with repetition
  All integer

  Platforms
  NVIDIA Quadro 6000 (mostly), Quadro 5000, GTX 285, 8800 GT

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

1.5-3x faster than best selections
3-6x faster than Thrust select-via-sort

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Handles list lengths n 2-4x bigger
than Thrust select-via-sort

GPU global
memory max n max

k/n

max n,
no k

restriction

thrust
max n

6000 6 GB 229 0.34 228 228

5000 2.5 GB 228 0.53 227 226

285 1 GB 227 0.13 226 225

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Timings in terms of list length n

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Real radio-astronomy data closely
tracks random data

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

When is this algorithm slow?
  We identified one case when this is slower than

select-via-sort
  Lots of repetition AND
  The kth key occurs near the repetition

  In that case, the select-via-sort can be faster
  We found the break-even to be when between

half and three-quarters of the elements repeat
(and the kth happens to be one of them)
  Because nearly a full sort is done in the final select,

along with all of the other work

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Timings for different GPUs

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Probabilities pk give similar
timings when pk > 30%

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Kernel timings, n = 226

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

If you’re on the GPU, select there too
Same n=226 run as previous slide

PCIe transfer time overwhelms the select time

LA-UR 11-04829

HPC HPC-5 System Integration
High Performance Computing

Conclusions
  We have shown a fast randomized selection on the GPU

using a Las Vegas algorithm.
  Faster than other GPU-based selects we’ve examined

•  Even those that do less (i.e., only grab the kth, only grab keys)

  Select on the GPU when you’re already there
  Use this randomized select if

  The list changes between calls to select
  You want longer lists than a sort handles on your GPU

  Use select-via-sort only if
  You are selecting on the same list many times

•  That’s the added value of doing a sort first

  You know the series of lists have more than half repeated keys
and know that the kth is one of them most of the time

LA-UR 11-04829

