"
5)
1
Al

W0,

A
&cc. 0o 2
L) L)

Ay A
.\...n\ e
A A (A
e 5 A
() -—-— -.«-\-c‘- A

'«

...-..-.. e
.
o

[
et
i

re
Ay
A

<A NVIDIA.

FAIIIIIIIIII I N
REREEEEER R RN NN
' SIS DI I AN

X

earc

NVIDIA Res

ill Garanzha NVIDIA:
i
David McAllister NVIDIA

Kir
Jacopo Pantaleon

@
Short Summary =,

* Full GPU implementation

* Simple work queues generation

* Simple middle split hierarchy emission

e Efficient and straightforward top-level SAH tree
emission

* Enabled by fast atomic instructions

3 improvements over HLBVH 2010 2

* Fast work queues
* Spatial-median BVH splits based on binary search
* Top-level SAH BVH build on GPU

What is work queue for GPU e

Problem: Generates

variable # of work items

ta

GPU parallel processing
Target: Generate the
output elems [2/1/0/3/0[4/2]1 output queue with no holes
N TS

Output Queue data And get full GPU utilization

l GPU parallel processing

Input Queue da

: .
work queue generation nviia

* Option 1: output item address = atomic increment

on global counter for each element of input queue
* Pros: no need to store temp results
e Cons: many conflicting writes

: X
work queue generation nvioiA

e Option 2: output item address = prefix sum
* Pros: no conflicting writes
* Cons: need to store results in temp memory and propagate
them to output queue (global memory is limited on GPU)

: .
work queue generation nviia

* Option 3: hybrid approach

(local prefix sum + atomic / warp)
* Pros: unites the pros of both methods and remove their cons;
* Pros: fastest!

: X
work queue generation nvioiA

* Option 3: hybrid approach

- Every prefix sum is computed
in shared memory.

- No need to spend limited
global memory.

- Temp results stored in each
thread memory

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Input Queue data

output elems

. : -Atomic increments are fast
warp exclusive prefix sum (warp)| 0 | 2 | 2

Output item offset (global)| O | 2 | 2 on Fermi

- Reduce conflicting writes
output counter += warp[0] sum when used once per warp
output counter += warp[1] sum

output counter 8

NIDNDN

WQ application: HLBVH pipeline S

Work queues used in
iterative processes

Distribute primitives into clusters <

NVIDIA

e 2bit clusters are determined with 2 most
significant bits of each prim morton code
= e Compression from CSD is used to extract

the segments of clusters
XV * 15bit clusters are good for high-quality BVH

2-bit cluster

_:J * Sample 4bit morton codes
BN, 4

<
A% L</
(-

<X

Spatial median BVH emission =

Each morton code

expanded into bits
B e s B T B G ,
shown as row per 1 thread searches for 1 split
b. t I | mortoncode[bit3] | 0 | 0 | O | O | O | O | 1 1 1 1
iLieve mortoncodefbit2] | 0 | 0 | 0 1 |1] 1]0]0}1]|H1 2 threads search for 2 splits
mortoncode[bit] | 0 | O f 1|0 | 0O} 1|0} 1]0]|1
mortoncode[bit0] 0 1 4 threads search for 4 splits

vinives I I

* Primitives sorted according to Morton Codes

* Find the split in the range of primitives using trivial binary
search per thread: log2(n) memory fetches and comparison

* Very simple implementation of binary search merges well

with simple work queues

Binned SAH top-level BVH

15bit clusters are good for high-quality
BVH...

Up to 32K clusters, each represent
median-split BVH with a bounding box
We have implemented [Wald IRT 2007]
binned BVH builder using CUDA

Atomic instructions of Fermi provide
with good results and simple
implementation

Pros: Everything stays in GPU memory,
no transfer costs

Clusters

AABB * Bbox
int3 * binID
int * SplitID

Split-task Queuel[in]

AABB * BvhNodeBbox
int * numClusters
int * BvhNodelD
int * BestPlanelD

int * newSplitTaskID

BIN *
BIN *
BIN *
BIN *
BIN *

bin[0]
bin[1]
bin[2]
bin[3]
bin[4]

Split-task Queue[out]

<3

NVIDIA
0//o g} 3 fio 2|0
|
i
~a 2 3
I -
XYz z /xyz Xy z
il h

AABB * BvhNodeBbox

int * numClusters

<A
NVIDIA

Results

e 10x faster than original HLBVH 2010

* Uses 4x less GPU device memory for BVH emission

* Quality of HLBVH is 10-15% lower than the quality
of full SAH BVH

* Can build PowerPlant (12.7M triangles) in-core on
GTX480 in 62ms

<>
Results nf,%A

e GTX 480:
 Fairy Forest BVH (174K triangles) — 4.8ms
e Turbine Blade BVH (2M triangles) — 10.5ms

 Power Plant (12M triangles) — 62ms

Results >

NVIDIA

* Fast work queues enable a very high speed GPU
based BVH build

* We believe they will enable a large class of
parallel algorithms to be more straightforward
on GPUs

