
by Dietger van Antwerpen

Improving SIMD Efficiency for Parallel 
Monte Carlo Light Transport on the 

GPU



Outline

� Introduction

� Path Tracing

� Bidirectional Path Tracing

� Metropolis Light Transport

� Results 

� Demo



Parallel MC Rendering 

� Monte Carlo rendering embarrassingly parallel

� Generate many samples in parallel

� Not so trivial for wide SIMD architectures

� Samples have stochastic sample length

� Uneven sample workload 

� Incoherent execution flow

� Low SIMD efficiency



Random Walk

� PT and BDPT use random walks

� Walk is terminated using Russian roulette

� Stochastic path lengths

� ~33% active threads per GPU warp

� Upper bound on SIMD efficiency



Bidirectional Connections

� BDPT fully connects two random walks

� Number of connections is quadratic in average 
random walk length

� ~17% active threads per GPU warp

� Upper bound on SIMD efficiency



Contributions

� Improving average SIMD efficiency

− Random walk phase: 

Combining stream compaction and sample 
regeneration

− Bidirectional connect phase: 

Evaluating all connections from all samples in 
parallel 

� Implement MLT on top of BDPT on the GPU



Outline

� Introduction

� Path Tracing

� Bidirectional Path Tracing

� Metropolis Light Transport

� Results

� Demo



In-Place Sample Regeneration

� Proposed by Novak et al.

� Regenerate after each extension

� Restart all terminated samples in-place

� Advantage:
− Improves SIMD efficiency during sample extension and 

connection

� Disadvantage:
− Low SIMD efficiency during regeneration

− ~30% active threads per GPU warp



Stream Compaction + Regeneration

� Remove terminated samples from the stream 
using stream compaction

� Short stream length may reduce GPU utilization

� Regenerate terminated samples at the end of the
sample stream



Stream Compaction + Regeneration

� Initialize sample stream

Generate stream

Sample stream

...

...



Stream Compaction + Regeneration

� Extend all samples with next path vertex

� Some samples terminate

� Compact output stream

Sample stream

Extend stream

...

...

...

...



Stream Compaction + Regeneration

� Output stream becomes next sample stream

� Regenerate new samples at the end

Generate stream

Sample stream

...

... ...



Advantages

� High SIMD efficiency during extension and 
connection

� High SIMD efficiency during regeneration

� Fixed size sample stream

� Regenerated samples lie side-by-side

� Primary rays benefit from primary ray coherence

� ~20% speedup over in-place sample regeneration



Outline

� Introduction

� Path Tracing

� Bidirectional Path Tracing

� Metropolis Light Transport

� Results

� Demo



Bidirectional Path Tracing

� Improve SIMD efficiency during random walk
− Combine stream compaction and regeneration

� Improve SIMD efficiency during connection
− Evaluate all bidirectional connections in parallel

� Algorithm is divided in random walk and connect
phase

� Phases execute repeatedly one after the other



Random Walk Phase

� Initialize eye and light path stream

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Eye path stream Light path stream



Random Walk Phase

� Extend all paths with one vertex

� Some paths terminate

Eye path stream Light path stream
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8



Random Walk Phase

� Compact path streams

Eye path stream Light path stream

1 2 3 4 5 6 7 2 3 4 5 6 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8



Random Walk Phase

� Repeat extend and compact

� Postpone regeneration

1 2 3 4 5 6 7 2 3 4 5 6 8

Eye path stream Light path stream

2 4 5 6 2 4 5 6

1 7

3 8

8

1 3 7

2 4 6 4 5 6



Random Walk Phase

� Sample terminates when both eye and light path 
have terminated

1 2 3 4 5 6 7 2 3 4 5 6 8

Eye path stream Light path stream

2 4 5 6 2 4 5 6

2 4 4 5

1 7

3 8

8

1 3 7

6 6



Random Walk Phase

� Repeat until 60% of samples terminated

Eye path stream Light path stream
1 2 3 4 5 6 7 2 3 4 5 6 8

2 4 5 6 2 4 5 6

1 7

3 8

8

1 3 7

2 4 6 4 5 6



Bidirectional Connect Phase

� Evaluate connections for terminated samples

� Generate stream of bidirectional connections 

1 1 3 3 3 3 7 7 8 8

Eye path stream Light path stream
1 2 3 4 5 6 7 2 3 4 5 6 8

2 4 5 6 2 4 5 6

1 7

3 8

8

1 3 7

2 4 6 4 5 6

6 6 6 6 6 6 6 6 6

Bidirectional connection stream



Sample Regeneration

� Regenerate terminated samples and resume 
random walk phase

Eye path stream Light path stream

2 4 6 4 5 61 3 7 8 1 3 7 8

1 2 3 4 5 6 7 2 3 4 5 6 8

2 4 5 6 2 4 5 6

1 7

3 8

8

1 3 7



Sample Regeneration

� Sample regeneration keeps path streams long

� Good for GPU utilization

� Total speedup ~15%

� Less than for path tracing

� Sample regeneration only improves random walk 
phase

� BDPT spends only ~55% in random walk phase



Bidirectional Connect Phase

� Evaluate all connection in parallel

� Each terminated sample contributes #connections

� Execute thread for each connection

� Threads figure out which connection to evaluate 
using

− Parallel scan over all samples

− Binary search for each connection thread

� See paper for details...



Outline

� Introduction

� Path Tracing

� Bidirectional Path Tracing

� Metropolis Light Transport

� Results

� Demo



Metropolis Light Transport

� Run many independent MLT samplers in parallel

� Based on the BDPT implementation

� Use variation on Kelemen mutation

� Only mutate sample dimensions used in both 
current and mutated sample

� Estimate normalization constant on the fly



Startup Bias

� Each MLT sampler introduces startup bias

� Many parallel samplers means lots of bias

� Bias is usually larger for difficult scenes

10 seconds Reference



Startup Bias

� Each MLT sampler introduces startup bias

� Many parallel samplers means lots of bias

� Bias is usually larger for difficult scenes

1 minute Reference



Startup Bias

� Each MLT sampler introduces startup bias

� Many parallel samplers means lots of bias

� Bias is usually larger for difficult scenes

10 minutes Reference



Outline

� Introduction

� Path Tracing

� Bidirectional Path Tracing

� Metropolis Light Transport

� Results

� Demo



SIMD efficiency

� Algorithms always work on continuous streams

� Active threads per GPU warp ~99%

� Upper bound on actual SIMD efficiency

� Actual SIMD efficiency lower due to divergent 
shader/traversal code

� Performance improvement less than SIMD 
efficiency improvement...



GPU vs. CPU

� Compared with 
straightforward 
multicore CPU 
implementation

� NVIDIA GTX 480 GPU

� Intel Core i7 920 CPU

� Speedup between 8x 
and 15x

� GPU can do more than 
path tracing!

PT BDPT MLT
0

2

4

6

8

10

12

14

16

18

20
CPU
Min GPU
Max GPU

Speedup



Demo



Questions?



Extra



Immediate Stream Compaction

� Stream compaction requires multi-pass parallel 
scan and scatter pass

� Immediate stream compaction in single pass

� Parallel scan per block in shard memory

� Block allocates space in output buffer using one 
atomic add

� Threads write items directly into compacted output 
stream



Immediate Stream Compaction

� Label all active threads

1 1 0 1 0 0 1 1 1 0

Thread Block

Output stream
...



Immediate Stream Compaction

� Parallel scan per block in shared memory

1 2 2 3 3 3 4 5 6 6

Output stream

Thread Block

...



Immediate Stream Compaction

� Block allocates memory in output stream using an 
atomic instruction

1 2 2 3 3 3 4 5 6 6

...

Output stream

Thread Block



Immediate Stream Compaction

� Each active thread writes directly in the output
stream

1 2 2 3 3 3 4 5 6 6

...

Output stream

Thread Block

1 2 3 4 5 6



Parallel Bidirectional Connect

� Each sample writes #connections in connection 
count buffer

� Non-terminated samples write a zero

1 2 3 4 5 6 7 8

2 0 4 0 0 9 2 2



Parallel Bidirectional Connect

� Parallel scan the connection count buffer

� Gives the #connections preceding each sample in 
the buffer

1 2 3 4 5 6 7 8

2 2 6 6 6 15 17 19



Parallel Bidirectional Connect

� Start one GPU thread for each connection

0 1 2 3 4 5 15 16 17 186 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8

2 2 6 6 6 15 17 19



Parallel Bidirectional Connect

� Binary search thread index for corresponding 
sample in connection count buffer

1 2 3 4 5 6 7 8

2 2 6 6 6 15 17 19

0 1 2 3 4 5 15 16 17 186 7 8 9 10 11 12 13 14



Parallel Bidirectional Connect

� Compute local connection index from sample 
connection count

1 2 3 4 5 6 7 8

2 2 6 6 6 15 17 19

1 2 41 2 3 1 2 1 291 2 3 4 5 6 7 8



Parallel Bidirectional Connect

� Local connection indices map to an eye-light 
vertex pair to connection

� Each thread evaluates its connection



Coalesced Vertex Scattering

� Path vertices are stored during random walk

� Vertices are scattered to pre-allocated vertex 
memory

� Each thread scattering its vertex would result in 
uncoalesced memory access

� Threads in a warp collaborate to efficiently
scatter path vertices to memory

� Vertices are scattered through shared memory

� Similar to matrix transpose



Coalesced Vertex Scatter

� Vertex is 128 bytes

� Each thread in warp 
writes vertex to shared 
memory

1 3 4 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

2 5

Warp

Shared memory buffer



Coalesced Vertex Scatter

� Each thread in warp reads one word from each 
vertex in shared memory buffer

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6 1

3

4

6

2

5

Warp

Shared memory buffer



Coalesced Vertex Scatter

� Each thread scatters one word of each vertex

� Coalesced scatter

1

2

3

4

5

61 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 1 1 1 1 1

Vertex memory

Shared memory buffer

Warp



Coalesced Vertex Scatter

� Each thread scatters one word of each vertex

� Coalesced scatter

1

2

3

4

5

61 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

2 2 2 2 2 2

Vertex memory

Shared memory buffer

Warp



Coalesced Vertex Scatter

� Each thread scatters one word of each vertex

� Coalesced scatter

1

2

3

4

5

61 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

3 3 3 3 3 3

Vertex memory

Shared memory buffer

Warp



Mutation Strategy

� Kelemen et al. proposed to lazily perturb all infinite 
dimensions

� Leads to uneven workload during mutation

� Instead, perturb only dimensions used in both the 
current and mutated sample

� Regenerate other dimensions

� Keeps the strategy symmetric

� Reduces memory usage

� Even workload per path vertex


