
Depth Buffer Compression for
Stochastic Motion Blur Rasterization

Jon Hasselgren1 Magnus Andersson1, 2 Tomas Akenine-Möller1, 2

1

1 Intel Corporation 2 Lund University

Motivation

• Adding stochastically
sampled motion blur to
the mix
– Doesn’t work well with

existing algorithms

2

• Depth buffer memory
transactions require a
significant amount of BW

• Reduced with caching…

• …and with compression

Overview

• Architectural/Compression Frameworks

• Previous Work

• Our Algorithm

• Results

• Conclusions

3

Depth Unit

Architectural Framework

Rasterizer &
Depth Test

Tile table cache

Tile cache

R
A

M

4

M
em

o
ry b

u
s

Depth Unit

Architectural Framework

Rasterizer &
Depth Test

Tile table cache

Tile cache

R
A

M

D
ep

th
 U

n
it

Tile

Tile table
- Clear
- Mode

- zmin

- zmax

- …

5

M
em

o
ry b

u
s

Depth Unit

Architectural Framework

Rasterizer &
Depth Test

Tile table cache

Tile cache

R
A

M

Compressor /
Decompressor

6 [Morein 2000, Hasselgren and Akenine-Möller 2006]

M
em

o
ry b

u
s

Compression Framework

Existing compression schemes can be described with
the three following steps:

1. Clustering
– Group samples with similar

characteristics

2. Predictor function generation
– Find suitable predictors for each

cluster that minimizes the error

3. Residual encoding
– Capture the remaining error

1

3

2

7

Previous Work

 Described by Hasselgren & Akenine-Möller [2006]

Depth Offset (DO) compression:

• Uses zmin and zmax of the tile
– We assume that these are freely available in the tile table

Mid point

8

Previous Work

• Most other compression schemes assumes
that z = zc / wc is linear over a triangle in
screen space;

• Perfectly valid for static scenes

9

Previous Work

Anchor encoding / DDPCM (Differential

Differential Pulse Code Modulation)

• Create a predictor plane from
three neighboring pixels

• Store residuals in few bits

• DDPCM can handle two planes
originating from different corners

– Clustering

10

Δx

Δy

 Described by Hasselgren & Akenine-Möller [2006]

Previous Work

[Hasselgren and Akenine-Möller 2006]
– Smarter bit distribution

– Better clustering

[Ström et al. 2008]
– Predicts from a larger number of pixels

– Handles floating point buffers

– Variable rate residuals with Rice coding

[Lloyd et al. 2007]
– Targets logarithmic shadow maps

11

Δx

Δy

 Improvements on Anchor encoding / DDPCM:

Previous Work

Plane encoding

• Communicates with the rasterizer

– Input: coverage mask and plane
equation

– Can store many planes in one tile

– Store compressed in cache

12

 Described by Hasselgren & Akenine-Möller [2006]

0: a0x + b0y + c0

1: a1x + b1y + c1

2: a2x + b2y + c2

0 0

0

1

1

1

1

1

1

1

1

2

1

2

2

2

Motion Blur Challenges

• Assumptions made by previous work:
– z is linear over a triangle in screen space

– Samples are arranged in a grid

(Note: Neither of these assumptions is made by DO)

y

x

13

Motion Blur Challenges

• Assumptions made by previous work:
– z is linear over a triangle in screen space

– Samples are arranged in a grid

Introducing motion blur

14

Motion Blur Challenges

• Assumptions made by previous work:
– z is linear over a triangle in screen space

– Samples are arranged in a grid

Introducing motion blur

y

x

MSAA Time dependence

x

y
t

15

[Gribel et al. 2010]

Our Algorithm

Algorithm steps:

1. Clustering

2. Predictor function generation

3. Residual encoding

1

2

3

16

Our Algorithm

1. Clustering 1

• Different depth layers often have different characteristics

Camera

Static background

Moving object

Ex. 1 Moving camera

Static

Moving object

Ex. 2

Moving/
rotating object

Cleared background

17

Clustering is very useful around moving silhouettes

Our Algorithm

1. Clustering 1

18

Normal shaded = Two layers

Assume that there is at least some separation
in depth between layers

Our Algorithm

1. Clustering 1

19

Our Algorithm

1. Predictor function generation

For each layer we use one of 3 different
predictors:

2

Goal: Minimizing error => fewer residual bits

 But which error do we wish to minimize?

20

Static patch: Patch(x, y)

Moving plane: Plane(x, y, t)

Moving patch: Patch(x, y, t)

Our Algorithm

1. Predictor function generation 2

Minimize the maximum error of any sample

• Use minimax (related to the convex hull)
– Very expensive

depth

x

[Houle and Toussaint 1988]
21

Our Algorithm

1. Predictor function generation 2

We use an approximation of minimax

• Simplify the problem by reducing the number of points to a
few representatives

• A similar approach is used as a first step in all of our
compression modes

depth

x

22

Our Algorithm

1. Predictor function generation 2

1. Split the samples into two sub-tiles. Then for each sub-tile:
A. Find samples with minimum and maximum z values

B. Use the mid-points as representative points

2. Use the representative points to solve for the predictor

More details in paper…

depth

x

23

Our Algorithm

1. Predictor function generation

Static patch: z = a + bx + cy + dxy

• Not time dependent

• Select 2x2 sub-tiles in xy

2

24

y

x

Our Algorithm

1. Predictor function generation

Moving plane: z = a + bx + cy + dt

• Time dependent plane

• Select 2x2x2 sub-tiles in xyt

– Select 4 points that are not coplanar

2

25

y

x

t

Our Algorithm

1. Predictor function generation

Moving patch:

 z = (1 – t) (a0 + b0x + c0y + d0xy)

 + t (a1 + b1x + c1y + d1xy)

• Interpolate two patches

• Select 2x2x2 sub-tiles in xyt
– Create one patch in each 2x2x1-slice

– Extrapolate to t = 0 and t = 1

– Predict by interpolating between the two

2

26

y

x

t

Our Algorithm

1. Residual encoding

• Calculate the offset coefficient, a, so that all
errors are positive

27

3

• Each sample is given the same number of
residual bits

– I.e. that of the largest remaining error

• We “steal” one bit combination to signal
clear instead

– Use the maximum representable error given
residual bit count

Our Algorithm

Selecting the best combination

• Try all predictor combinations and select the
one with the lowest total bit count

28

• We also try to compress with DO

– Will present results from our algorithm alone,
and in combination with DO

Implementation

Tiles are extended in the t-dimension as well

• w x h x n

29

y

x

t

Depth Unit

Implementation

Rasterizer &
Depth Test

Tile table cache

Tile cache

R
A

M

Compressor /
Decompressor

64kB

4kB

32b
Fixed

512b
Cache size

Cache size

Precision Bus width

8x8x4
4x4x4

Tile sizes
(w x h x t)

4 spp
16 spp

MSAA rates

30

Results
Airship & Cannon

Original images courtesy of Unigine

31

Images are rendered in 1920x1200

Results
Spiders & Stone giant

Original images courtesy of BitSquid

32

Images are rendered in 1920x1200

Results
Spheres

Original image

33

Results
Increasing motion

Increasing motion

34

Compression Ratio

35 Uncompressed Best compression

Conclusions

First steps into motion blur depth compression

• Good compression rates are possible on
stochastically sampled motion blur buffers

• DO is quite good at handling noisy tiles!

– Good complement to our algorithm

• Linearly approximating t works quite well

36

Thank you!
Questions?

37

Tile header layout

38

= 64 bits

• N lines = 0 Uncompressed

• Mode 0 = 00
– Mode 1 = 00 Cleared

– Mode 1 = 01 Compressed with DO

• Mode 0 = 01, 10, 11 Layer 1 predictor mode

– Mode 1 = 00 No second predictor

– Mode 1 = 01, 10, 11 Layer 2 predictor mode

 Bit combination Tile status

Compressed tile layout

39

Mode 0 & 1: 256 bits

Mode 2: 512 bits

1 Layer

2 Layers

DO

Our

 n: Number of samples per tile

 k: Residual bits

Acknowledgements

Thanks to Tobias Persson from BitSquid for letting us use the StoneGiant
demo, and to Denis Shergin from Unigine for letting us use images from
Heaven 2.0. Tomas Akenine-Möller is a Royal Swedish Academy of Sciences
Research Fellow supported by a grant from the Knut and Alice Wallenberg
Foundation. In addition, we acknowledge support from the Swedish
Foundation for strategic research.

40

References

• Gribel, C. J., Doggett, M., and Akenine-Möller, T. 2010. Analytical Motion
Blur Rasterization with Compression. In High Performance Graphics, 163–
172.

• Hasselgren, J., and Akenine-Möller, T. 2006. Efficient Depth Buffer
Compression. In Graphics Hardware, 103–110.

• Houle, M., and Toussaint, G. 1988. Computing the Width of a Set. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10, 5, 761 –
765.

• Lloyd, D. B., Govindaraju, N. K., Molnar, S. E., and Manocha, D. 2007.
Practical Logarithmic Rasterization for Low-Error Shadow Maps. In
Graphics Hardware, 17–24.

• Morein, S. 2000. ATI Radeon HyperZ Technology. In Workshop on Graphics
Hardware, Hot3D Proceedings, ACM Press.

• Ström, J., Wennersten, P., Rasmusson, J., Hasselgren, J., Munkberg, J.,
Clarberg, P., and Akenine-Möller, T. 2008. Floating-Point Buffer
Compression in a Unified Codec Architecture. In Graphics Hardware, 96–
101.

41

