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Motivation 

• Adding stochastically 
sampled motion blur to 
the mix 
– Doesn’t work well with 

existing algorithms 
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• Depth buffer memory 
transactions require a 
significant amount of BW 

• Reduced with caching… 

• …and with compression 



Overview 

• Architectural/Compression Frameworks 

• Previous Work 

• Our Algorithm 

• Results 

• Conclusions 
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Compression Framework 

Existing compression schemes can be described with 
the three following steps: 

1. Clustering 
– Group samples with similar 

characteristics 

2. Predictor function generation 
– Find suitable predictors for each 

cluster that minimizes the error 

3. Residual encoding 
– Capture the remaining error 
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Previous Work 

 Described by Hasselgren & Akenine-Möller [2006] 

Depth Offset (DO) compression: 

• Uses zmin and zmax of the tile 
– We assume that these are freely available in the tile table 

 

Mid point 
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Previous Work 

• Most other compression schemes assumes 
that z = zc / wc is linear over a triangle in 
screen space; 

 

 

• Perfectly valid for static scenes 
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Previous Work 

Anchor encoding / DDPCM (Differential 

Differential Pulse Code Modulation) 

• Create a predictor plane from 
three neighboring pixels 

• Store residuals in few bits 

• DDPCM can handle two planes 
originating from different corners 

– Clustering 
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Δx 

Δy 

 Described by Hasselgren & Akenine-Möller [2006] 



Previous Work 

[Hasselgren and Akenine-Möller 2006] 
– Smarter bit distribution 

– Better clustering 
 

[Ström et al. 2008] 
– Predicts from a larger number of pixels 

– Handles floating point buffers 

– Variable rate residuals with Rice coding 
 

[Lloyd et al. 2007] 
– Targets logarithmic shadow maps 
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 Improvements on Anchor encoding / DDPCM: 



Previous Work 

Plane encoding 

• Communicates with the rasterizer 

– Input: coverage mask and plane 
equation 

– Can store many planes in one tile 

– Store compressed in cache 
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 Described by Hasselgren & Akenine-Möller [2006] 

0: a0x + b0y + c0 

1: a1x + b1y + c1 

2: a2x + b2y + c2 
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Motion Blur Challenges 

• Assumptions made by previous work: 
– z is linear over a triangle in screen space 

– Samples are arranged in a grid 

 

 

 

 

 

 

 

(Note: Neither of these assumptions is made by DO) 
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Motion Blur Challenges 

• Assumptions made by previous work: 
– z is linear over a triangle in screen space 

– Samples are arranged in a grid 

Introducing motion blur 
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Motion Blur Challenges 

• Assumptions made by previous work: 
– z is linear over a triangle in screen space 

– Samples are arranged in a grid 

Introducing motion blur 

 

y 

x 

MSAA Time dependence 

x 

y 
t 

15 

[Gribel et al. 2010] 



Our Algorithm 

Algorithm steps: 

1. Clustering 

2. Predictor function generation 

3. Residual encoding 
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Our Algorithm 

1. Clustering 1 

• Different depth layers often have different characteristics 

Camera 

Static background 

Moving object 

Ex. 1 Moving camera 

Static 

Moving object 

Ex. 2 

Moving/ 
rotating object 

Cleared background 
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Clustering is very useful around moving silhouettes 

Our Algorithm 

1. Clustering 1 
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Normal shaded = Two layers 



Assume that there is at least some separation 
in depth between layers 

Our Algorithm 

1. Clustering 1 
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Our Algorithm 

1. Predictor function generation 

For each layer we use one of 3 different 
predictors: 

2 

Goal: Minimizing error => fewer residual bits 

 But which error do we wish to minimize? 
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Static patch:  Patch(x, y) 

Moving plane:  Plane(x, y, t) 

Moving patch:  Patch(x, y, t) 



Our Algorithm 

1. Predictor function generation 2 

Minimize the maximum error of any sample 

• Use minimax  (related to the convex hull) 
– Very expensive 

 

depth 
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[Houle and Toussaint 1988] 
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Our Algorithm 

1. Predictor function generation 2 

We use an approximation of minimax 

• Simplify the problem by reducing the number of points to a 
few representatives 

• A similar approach is used as a first step in all of our 
compression modes 

depth 

x 
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Our Algorithm 

1. Predictor function generation 2 

1. Split the samples into two sub-tiles. Then for each sub-tile: 
A. Find samples with minimum and maximum z values 

B. Use the mid-points as representative points 

2. Use the representative points to solve for the predictor 

 
More details in paper… 
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Our Algorithm 

1. Predictor function generation 

Static patch:   z = a + bx + cy + dxy 
 

 

• Not time dependent 

• Select 2x2 sub-tiles in xy 
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Our Algorithm 

1. Predictor function generation 

Moving plane:   z = a + bx + cy + dt 
 

 

• Time dependent plane 

• Select 2x2x2 sub-tiles in xyt 

– Select 4 points that are not coplanar 
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Our Algorithm 

1. Predictor function generation 

Moving patch:  

  z = (1 – t) (a0 + b0x + c0y + d0xy) 

             + t (a1 + b1x + c1y + d1xy) 

• Interpolate two patches 

• Select 2x2x2 sub-tiles in xyt 
– Create one patch in each 2x2x1-slice 

– Extrapolate to t = 0 and t = 1 

– Predict by interpolating between the two 

2 

26 

y 

x 

t 



Our Algorithm 

1. Residual encoding 

• Calculate the offset coefficient, a, so that all 
errors are positive 
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• Each sample is given the same number of 
residual bits 

– I.e. that of the largest remaining error 

• We “steal” one bit combination to signal 
clear instead 

– Use the maximum representable error given 
residual bit count 



Our Algorithm 

Selecting the best combination 

• Try all predictor combinations and select the 
one with the lowest total bit count 
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• We also try to compress with DO 

– Will present results from our algorithm alone, 
and in combination with DO 



Implementation 

Tiles are extended in the t-dimension as well 

• w x h x n 
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Results 
Airship & Cannon 

Original images courtesy of Unigine 
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Images are rendered in 1920x1200 



Results 
Spiders & Stone giant 

Original images courtesy of BitSquid 
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Images are rendered in 1920x1200 



Results 
Spheres 

Original image 
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Results 
Increasing motion 

Increasing motion 
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Compression Ratio 

35 Uncompressed Best compression 



Conclusions 

First steps into motion blur depth compression 
 

• Good compression rates are possible on 
stochastically sampled motion blur buffers 

• DO is quite good at handling noisy tiles! 

– Good complement to our algorithm 

• Linearly approximating t works quite well 
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Thank you! 
Questions? 
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Tile header layout 
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= 64 bits 

• N lines = 0    Uncompressed 
 

• Mode 0 = 00 
– Mode 1 = 00   Cleared 

– Mode 1 = 01   Compressed with DO 

• Mode 0 = 01, 10, 11  Layer 1 predictor mode 

– Mode 1 = 00   No second predictor 

– Mode 1 = 01, 10, 11  Layer 2 predictor mode 

     Bit combination   Tile status 



Compressed tile layout 
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Mode 0 & 1:   256 bits 

Mode 2:         512 bits 

1 Layer 

2 Layers 

DO 

Our 

   n: Number of samples per tile 

   k: Residual bits 
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