

At the Verge of Change
How HPG drives industrial Decision-Making

Cornelia Denk, Manager Technology & Innovation at RTT

Abstract

Beyond the film and gaming industry, High Performance Graphics has found its way into industrial decision-making processes on a broad scale – from the first design up to the point of sale.

These industry applications, however, come with a different set of challenges:

- Where to draw the line between high performance visualization and simulation?
- _ How to find the balance between required process optimization and freedom of creativity?
- _ How to combine different specialized algorithms to meet divergent requirements?
- _ Which new data models and asset standards have to be developed as a result?

I will give you insight on how to solve these challenges and share our vision about opportunities to take high performance visualization to the next level of enterprise applications.

RTT Offices

RT challenging realit

International Presence for global Support

- Founded in 1999 / Munich, Germany
- _ Headquarters: Munich, RTT AG
- _ Subsidiaries: RTT USA, Inc. (Pasadena), RTT Asia-Pacific, Inc. (Seoul), RTT Japan K.K. (Tokyo) and RTT China (Shanghai)
- Offices in Royal Oak, Pasadena,
 Sao Paolo, London, Paris, Brussels,
 Milan, Valencia, Stuttgart, Hamburg,
 Shanghai, Tokyo
- _ 500+ employees

RTT Business Model

RTT Approach – Increase Efficiency The Leitmotif of every Product History

Seamless Transition between Virtual Prototyping and Virtual Marketing

Design

Realistic Design Preview

- _ Form and material design
- _ Design reviews & decisions
- → Realistic and plausible but performance matters

Development

Reliable Analysis

- _ Analysis & Simulation
- _ Immersive Experience
- → From plausible to physically correct

Marketing

Raise Emotions

- _ Print images
- _ Movie productions
- → Realistic but also emotional

Sales

Reach end Customer

- _ Mobile & web applications
- _ Point of sale solutions
- Entertainment
- → Performance is key

Replace physical prototypes with virtual ones

Accelerate creative processes

Virtual Model Applications

R I challenging reality

Design, Development, Marketing and Sales

One 3D Realtime model is the basis and used in any use cases

Games vs realtime Industry Visualization

Games

_ Less than 1 million triangles

- _ Optimized textures
- _ 1 shadow texture per scene or screenspaced approaches
- Visual quality: _ Artistic

Data size:

- _ Emotional (dust, scratches, etc)
- Flexibility: _ Configured once before start
 - → Highly Optimized

Performance: _ 60 FPS @ HD

Industry Visualization

- _ Up to hundred million triangles
- _ Many large textures
- _ Shadow textures per shape
- _ From physically correct to realistic
- _ Clean look (no dust, no scratches)
- _ Fully configurable

_ 15 FPS @ HD / 4K / 5 x 2x2K

Offline production vs realtime Industry Visualization

Offline

Visual Quality: _ Optimization for 2D image

_ 2D image as background

Flexibility: _ Fixed camera view

_ Tuning and variations via post

Post

_ Manual tweaking and painting

Production:

Performance: _ Render time not that critical

Realtime

- _ High quality for any camera view
- _ 3D environment necessary
- _ Fully configurable
- _ Very limited possibilities

_ 15 FPS @ HD / 4K / 5 x 2x2K

Market Trends Scene Complexity

Within the last 5 years:

Number of polygons, variations, texture size increased by factor 10

Market Trends Workflow

Increasing model variety based on a common model

- _ Longer life-cycle of a VR-model
- _ Reuse of model components
- *⇒*Customization and reduce cost

Global collaboration

→ Server based deployment

Market Trends VR data usage throughout the whole enterprise

Decision-making based on virtual models

- _ High demand for reliability and correctness
- _ Longer life-cycle of a VR-model (30 years)
- _ Boundaries between visualization and simulation start to blur
- → Shorten time to market and reduce cost

Demand for fully integrated processes

- Standardized data models
- Scene assembly
- Demand for automation
- → Shorten time to market

Challenge: Divergent Requirements

Performance Visual quality

Physically correct Emotional

Automation Freedom of creativity

Ease of use Flexibility

Generalization Optimization

Our Goal

1. Flexible, scalable and consistent rendering system

- _ Rasterization & raytracing
- _ Material definition

2. Industrialization of VR

- _ Process integration
- _ Material definition
- _ Server based deployment

Flexible, scalable and consistent Rendering System

Rasterization & Raytracing

Rendering System Increasing Complexity

	Shadow Mapping			Pathtracing	Noise Reduction & Sampling Optimization	
	Offline Sha Import	dow	Precomputed Radiance Transfer Ambient Occlusion	Lightmaps		
OpenGL Renderer + LOD Generation Tool OpenGL Optimizer		OpenGL Renderer Based on NVSG	1. Realtime GPU Raytracer Based on GLSL		Realtime CPU Raytracer	Realtime GPU Raytracer Based on CUDA
				CPU	-Raytracing	
	GPU-Raytracing			GPU-Raytracing		
Rasterization						
2001	2003	200!	5 2007	2	2009	2011

Rendering System

Rasterization - great in performance but not enough for decision-making

- _ Approximations and tricks (SSAO, Shadowmapping, blending modes,...)
- → Photorealistic visualization in realtime

Raytracing & GI – new reference

- Correct visualization basis for simulation
- Memory and texture handling challenging on GPUs → Hardware flexibility required
- → Reliable visualization but full global illumination still too slow for all use cases
- → Rasterization will stay (at least the next 5 years)
- → Need for Raytracing and GI is increasing
- → Consistent rendering system a must

Consistent System Physically based Rendering

Reference = Reality

Rasterization

GPU Raytracing CPU Raytracing

GPU Global Illumination
CPU Global Illumination

- → Physical world to be the reference to achieve realistic results
- → Reason: Reality is not defined by rendering algorithms or hardware restrictions

Beyond Physics

Pro physically based rendering...

- Reliable, photorealistic quality can be achieved with physically based rendering
- → Allows for automation and thus acceleration and scaling of the processes
- → Decrease the necessity for user intervention

But:

- Laws of physics should not restrict the ability to steer rendered images
- Allowing for emotive images and mood adjustments
- → Calls for new, innovative editing metaphors

What we want...

Realtime light-simulation...

- _ For any materials (any BSDF, measured, spectral...)
- _ For any scenarios (indoor, outdoor,...)
- For high resolutions
- For large, complex and dynamic scenes
- Write once be flexible to run on latest hardware
- _ Intuitive editing to fullfill marketing & sales needs

Hey, Researchers

- New global illumination algorithms highly appreciated
 - _ But need to be combinable and consistent
 - No need for special solutions with many limitations
- _ Find ways to enrich physically based rendering

Flexible, scalable and consistent Rendering System

Material Definition

Material Definition

Real Material

Digital Material

Material Definition Increasing Complexity

Material Definition

A Material should be

- _ Hardware independent
- _ Renderer independent
- →Can hardly be defined with existing shader languages
- →Very accurate representation: measured / captured data

Material Measurement

- _ Finds it's way into the industry
- Not all material properties can be measured yet
- Exchange of measured data still a challenge

What we want...

Standardized material definition ...

- _ That is renderer independent
- _ That is hardware independent
- For all measurement devices

Hey Researchers...

- We'd love to have a unified and standardized shader language that:
 Generates efficient shaders for any platform
- New measurement devices and methods for sophisticated materials are very welcome
- _ Standardized formats for materials and measured data (BRDF, BTF, ...)
- → we highly appreciate research in that direction and contribute actively

Industrialization of VR

Process Integration

Today: Destructive data handling prevents interoperability

_ Currently no interoperability between different tools

Beyond visualization

Our Goal: reuse and share Assets

- Change todays data handling
- _ Define new data models
- New scene handling (assembly)
- Create asset libraries

Beyond visualization - Integrated Data Model Visualization Data implemented as TC data model extension

Proposal: Automated Material Mapping via unique ID Global unique assignment of data (e.g. Materials)

VR Data Pool

Parts (JT-File) managed in PDM System

Reference Material Library

Measured / Captured materials as reference + OpenGL Fallback

Automated material mapping

Automated material mapping

SIEMENS PLM SOFTWARE

Quick engineering visualization

RTTTrue photo-realistic rendering

Industrialization of VR

Server based Deployment

Server based approaches

Global Collaboration

- Confidential, large, complex data
- No standardized data formats yet

Distribution

- Availability / robustness required
- Browser plugins not accepted

Success factors for server based approaches

- 1. Security / trustworthiness
- 2. Availability / robustness
- 3. Performance
- 4. Support for large data sets
- 5. Quality / no artifacts
- 6. Negligible administrative effort
- 7. No browser-plugins
- 8. Mobility / device independent
- 9. Standardization

Summary

Summary

- Reality is the reference point to provide value and reliability over the years
- Boundaries between visualization and simulation are starting to blur
- There is no "best" hardware solution, thus RTT will have a flexible answer
- Usability concepts for artistic enhancements is a critical success factor
- Measured materials find their way into the industry and serve as reference
- For a full process integration data management and workflows have to change

→ Enterprise-wide accessibility of VR is on its way

Thank you!

For any further information, access to presented videos, cooperation or job opportunities please get in touch:

E-Mail: cornelia.denk@rtt.ag

Web: www.rtt.ag

Realtime Technology AG

Rosenheimer Str. 145

81761 Munich | Germany

Tel +49 (0)89 200 275 0

Fax +49 (0)89 200 275 200

Connect With Us:

Facebook.com/rttag

Twitter.com/rttag

Youtube.com/RTTvisualisation

Copyright® RTT AG | August 2011