3
NVIDIA

Hardware-Accelerated Stochastic Rasterization
on Conventional GPU Architectures

Morgan McGuire Eric Enderton Peter Shirley David Luebke

NVIDIA Research NVIDIA Research
Williams College

Real-time stochastic rasterization of micropolygons
would require 70 of today’s GPUSs. [BRUNHAVER ET AL. 10]

Micropolygons are too small for efficient sampling.
[BRUNHAVER ET AL. 10, BOULOS ET AL. 10]

What about efficient macropolygon sampling?

Goals

» Defocus blur from non-pinhole lens
« Motion blur from non-zero exposure time

» |nteroperate with spatial antialiasing (MSAA)

 Real time on current hardware architectures and APlIs

i3

-

S
==

>

NVIDIA

A

Assumptions i

* Vertices move with constant velocity during a frame

[e.g., Akenine-Mdller et al. 07, Fatahalian et al. 09, Ragan-Kelly et al. 10]

« Shading does not vary significantly across a pixel or an exposure interval
(i.e., separate visibility and shading)

[e.g., Reeves et al. 87, Cook et al. 87, Fatahalian et al. 09, Ragan-Kelly et al. 10]

 Target “macro triangles” with edges longer than:
* intra-frame motion
» circle of confusion (defocus) radius

(works for any triangles, but efficiency increases with projected area)

'

Conclusions

Real-time stochastic rasterization is possible now

Motion blur is very different from defocus blur

Stochastic rasterization works well for motion blur

« Substantially better interactions than post-processing methods
 8x MSAA is probably good enough and today’s GPUs are built for it

« Constant velocity approximation yields surprisingly good results

Stociigstimgpam pling. igmine€fficien s &

of po‘phes.sm alter

any sw%es to co '...
I‘)cu ed triangles n@@r the lens Al e

0
c
0

.

State of the Art

Scene-Specific 2D Filtering and Compositing

a Il lnavinidahla Aartifante: lace AF nara”ax’ dlm bokeh, Color

[S

Just Cause 2 [Avalance & Eidos 10]

State of the Art

Scene-Specific 2D Filtering and Compositing

« Unavoidable artifacts: loss of parallax, dim bokeh, color
bleeding, black halos

» Extremely fast for controlled scenes and scenarios, e.g.,
cinematic, car game or small camera rotations

ﬁccumulation Buffering (brute force) \

* Physically correct

« Straightforward, but massively overshades

Stochastic Rendering

* Physically correct and reasonable shading cost

\ « Easy for rays/REYES, tricky to make efficient /

accumulation():

O(WeHeN) ghosts

[Cook et al. 84, 86, 87]

5 Sampling Parameters:
xy position on screen

t time

uv lens position

t* intersection time
t, shade time
¢t iteration parameter

>

_20 Rasterization

1. lr_Bound ¢.g., with a rectangle) the triangle’s screen-space
extent due to its shape (xy), motion (¢), and defocus (uv)

2. Iterate over the samples in that bound
3. Perform some xy7uv inside-outside test per sample

4. Shade the samples that pass

_20U Rasterization

1. lr_Bound ¢.g., with a rectangle) the triangle’s screen-space
extent due to its shape (xy), motion (7), and defocus (uv)

2. Iterate over the samples in that bound
3. Perform some xy7uv inside-outside test per sample

4. Shade the samples that pass

I I
I I
. I
. I
. I
. I
- L

[Wexler et al. 05] [Fatahalian al. 09]
[Akenine-Moller et al. 07] New: 2.5D Convex Hull

9

.

_20U Rasterization

Geometry Shader 1. eround ¢.g., with a rectangle) the triangle’s screen-space
extent due to its shape (xy), motion (7), and defocus (uv)

2D Rasterizer 2. T[terate over the samples in that bound

SR . 0
Pixel Shader Perform some xy7uv inside-outside test per sample

4. Shade the samples that pass

The challenge:
Tight 2D bounds yield high sample-test efficiency...

but are hard to compute because of:

» Geometric Issues
= Moving triangles carve bilinear patch edges
» Triangles may cross z = 0 in space or time

« Hardware Constraints
= Bound must be expressed as a triangle strip
= Need small, constant space and time algorithm

10

Bounding Defocus has been Solved

[Toth and Linder 08]

11

X

Our Bounding Solution

z=0

\

P

+z

“Normal”: All z< 0: Projected Hull Allz>z__: Cull

near-

"z=0 crossing™: z_. < and z_.. > 0: Clip and Box

12

Znear

Normal Case

Z= Znear

~~

~

>

NVIDIA

S

~
\\
~
~
~
//
~

I
I
I
I
I
-
I
[
L
I
I
I
I
I
I

“Normal”: All z<0: Projected Huli

\ 4

+z

S A
|

13

.

Normal Case

Sample Input Corresponding Output

(and pre-scan order)

Projected Time-Continuous Triangle 2.5D Convex Hull Tristrip
14

=

Normal Case

h(l) 1 Lower-left-most Vertex . }_Z.(,),
h! 0 hy
. Fan Vertex hf’Z,
h T
- G g
h} B! \ h}
0 . !
R 3

Eg @
! 0 -
D /N
h

X
4 @
h! 0

Bitonic findmin Bitonic sort Graham scan Tessellate

a

Legend: ;;:j> Move if at least one input is true Exchange if a.f < b.f

O

a a b 5
’(ZE (b.x-a.x)cy-ay) < (by-ay)cx-ax) $30] b=(bxy, Axrsqrt(Ax2+ Ay?), where A= b-a

15

' |

NVIDIA

D
"
©
&
o)
k=
n
7
O
S
&
o

y 4

16

Yy

Extreme Example of z =0 Case
IAGJ,.;LJ ’, T T ’ _ .

>

Extreme Example of z=0 Case e

I jitill g
'[- :’ T;H"nl’ [[[[!! ll fl"l

.'"."IIH/" ,”“ wis ?”l
'] / fll’,,/’l,‘

- "
s 1_[>
.-,‘c -
s L
. ,\
s ~

A
Extreme Example of z= 0 Case oA

|
Correct result for a moving camera nvioia

MSAA >

« Cast one visibility ray per sample

« Set the pixel's coverage mask

« Shade at most once per pixel

« Use ray differentials to determine anisotropic xytuv
MIP-map filtering and level [Loviscach 05]

21

RESULTS

22

NVIDIA

Rate: 1x

le

Multisamp

NVIDIA

4x

Rate

Multisample

Multisample Rate: 8x :‘ o

X

Multisample Rate: 16x |

: ‘*‘ﬁ(‘ I ?‘"'::.

s e

Multisample Rate: 64x

f

’ h
D
" P + A
3 = 218
w
Py .

X

NVIDIA

A.EFQ’,‘:, -:~:_‘ g

TR e

o e e
,
&

Defocus Blur

Fairy

Defocus blur

174k Triangles

8 vis, 4 tex, 1 shade / pix
1280 x 720 @ 10 fps
GeForce GTX 480

', |
nvIDIA

X
-

Multisample Rate

', |
nvIDIA

X
<t

Multisample Rate

', |
nV—lE;A

X
o0

mmum_“ f - urm
mﬁ\._ww.\.\,. E
.I\ j== I Fi

\ _,‘L_ N 1

Multisample Rate

', |
nvIDIA

X
(o
1

.“ ﬁm_“ e

Multisample Rate

', |
nVIDIA

X
4
(e

-4“3 -

\hmw\m
\ xa\.m n\ m

Multisample Rate

', |
nvIDIA

X
O
To)
N

Multisample Rate

Motion Blur

Bridge

Motion blur

1.8M Triangles

8 vis, 4 tex, 1 shade / pix
1280 X 720 @ 19 fps
GeForce GTX 480

Race

Motion blur

130k Triangles

8 vis, 4 tex, 1 shade / pix
1280 x 720 @ 72 fps
GeForce GTX 480

Conclusions & Future Work

Real-time stochastic rasterization is possible now
« Macrotriangles are much more efficient than micropolygons

« Convex hull radically increases STE

 New efficient hull and z=0 fallback solutions make hull viable

Motion blur is very different from defocus blur

* Integrate post-processed defocus with stochastic motion blur and
antialiasing

Fixed-function rasterizer is a power-efficient iterator

- Address the warp branch-coherence problem

* Build a fixed function, time-continuous rasterization unit?

37

>

NVIDIA

http://research.nvidia.com

Special thanks to Heiko Friedrich for helping
to render images In this talk.

38

ADDITIONAL MATERIAL

39

Performance

Vis
1
MSAA4x 4

SSAA4x 4

Race
130 ktri
Fig 6.

Motion
Bridge
1.8 Mtri

Fig. 1

9.5
4.8
4.3

Fairy
174 ktri
Fig. 5ur
22.8
15.5
14.1

Defocus
Fairy Cubes
174 Kktri 50 tri
Fig. 5lI Fig. 4

5.8 104.4
2.6 59.2
3.2 31.0

Frames per second at 1920x1080 on GeForce GT 280
including shadow maps, shading, and tone mapping

GeForce GTX 480 Results are 2x-3x faster

z =0 Crossing Case

* Project all non-culled (< 6) vertices
* Project all (= 12) intersections of edges with z=z,
« Bound these (< 18) points with a 2D box

« (For defocus, grow the box by the worst circle of
confusion)

« Cull if the box is outside the viewport (common)

* [Intuition:
« A triangle is the hull of its vertices
* A quadratic patch lies within the hull of its control points

» . The hull of the edges is the hull of the moving triangle

41

>

Our Temporal Bounding Solution

» For triangles entirely culled by z=0
Cull!

* For triangles entirely not culled by z=0
Project all 6 vertices

Solve for 2D convex hull [new algorithm]

* For triangles crossing z=0

Solve for 2D bounding box of non-clipped portion [new
algorithm]

42

X

Bounding Motion is Hard

'

Sample Test Efficiency

Convex Hull

