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Real-time stochastic rasterization of micropolygons 
would require 70 of today’s GPUs. [BRUNHAVER ET AL. 10] 

Micropolygons are too small for efficient sampling. 
[BRUNHAVER ET AL. 10, BOULOS ET AL. 10] 

What about efficient macropolygon sampling? 



•  Defocus blur from non-pinhole lens 

•  Motion blur from non-zero exposure time 

•  Interoperate with spatial antialiasing (MSAA) 

•  Real time on current hardware architectures and APIs 

Goals 
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•  Vertices move with constant velocity during a frame 

 [e.g., Akenine-Möller et al. 07, Fatahalian et al. 09, Ragan-Kelly et al. 10] 

•  Shading does not vary significantly across a pixel or an exposure interval 
(i.e., separate visibility and shading) 

 [e.g., Reeves et al. 87, Cook et al. 87, Fatahalian et al. 09, Ragan-Kelly et al. 10] 

•  Target “macro triangles” with edges longer than: 

•  intra-frame motion 

•  circle of confusion (defocus) radius 

(works for any triangles, but efficiency increases with projected area)  

Assumptions 
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Real-time stochastic rasterization is possible now 
Motion blur is very different from defocus blur 

Stochastic rasterization works well for motion blur 
•  Substantially better interactions than post-processing methods 

•  8x MSAA is probably good enough and today’s GPUs are built for it 

•  Constant velocity approximation yields surprisingly good results 

Conclusions 
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Stochastic sampling is inefficient for defocus 
•  Drawbacks of post-processing alternatives aren’t that bad here 

•  Requires many samples (>64) to converge 

•  Defocussed triangles near the lens can fill the screen 



Scene-Specific 2D Filtering and Compositing 
•  Unavoidable artifacts: loss of parallax, dim bokeh, color 

bleeding, black halos 

•  Extremely fast for controlled scenes and scenarios, e.g., 
cinematic, car game or small camera rotations 

Accumulation Buffering (brute force) 
•  Physically correct 

•  Straightforward, but massively overshades 

Stochastic Rendering 
•  Physically correct and reasonable shading cost 

•  Easy for rays, tricky for rasterization 

State of the Art 
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Burnout Paradise [Criterion Games 09] 
Just Cause 2 [Avalance & Eidos 10] 



Scene-Specific 2D Filtering and Compositing 
•  Unavoidable artifacts: loss of parallax, dim bokeh, color 

bleeding, black halos 

•  Extremely fast for controlled scenes and scenarios, e.g., 
cinematic, car game or small camera rotations 

Accumulation Buffering (brute force) 
•  Physically correct 

•  Straightforward, but massively overshades 

Stochastic Rendering 
•  Physically correct and reasonable shading cost 

•  Easy for rays/REYES, tricky to make efficient 

State of the Art 
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conventional(t, u, v): 
  for each x, y sample and triangle Q: 
    t*, u*, v* = t, u, v 

    z,α,β = intersect(Q, x, y, t*, u*, v*)  
    if z < depth[x, y]: 
       color[x, y] = shade(α, β, ts, us, vs) 
       depth[x, y] = z 
    return color 

stochastic(): 
  for each x, y sample and triangle Q: 
    t*, u*, v* = hash(x, y) 
    z,α,β = intersect(Q, x, y, t*, u*, v*)  
    if z < depth[x, y]: 
       color[x, y] = shade(α, β, ts, us, vs) 
       depth[x, y] = z 
 return color 

accumulation(): 
  for each t, u, v sample: 
     temp += conventional(t, u, v) 
    ++N 
  return temp / N 

O(WHN) 

O(WH) O(WH) 

5 Sampling Parameters: 
xy  position on screen 
t    time 
uv  lens position 

t* intersection time 
ts  shade time 
t   iteration parameter 

no blur noisy 

ghosts 

[Cook et al. 84, 86, 87] 



1.  Bound (e.g., with a rectangle) the triangle’s screen-space 
extent due to its shape (xy) 

2.  Iterate over the samples in that bound 

3.  Perform some xy      inside-outside test per sample 

4.  Shade the samples that pass 

2D Rasterization 
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2D Rasterizer 

Geometry Shader 

Pixel Shader 

, motion (t), and defocus (uv) 

5D 

tuv 
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[Wexler et al. 05] 

1.  Bound (e.g., with a rectangle) the triangle’s screen-space 
extent due to its shape (xy) 

2.  Iterate over the samples in that bound 

3.  Perform some xy      inside-outside test per sample 

4.  Shade the samples that pass 

2D Rasterization 

2D Rasterizer 

Geometry Shader 

Pixel Shader 

, motion (t), and defocus (uv) 

5D 

tuv 

[Akenine-Möller et al. 07] 

[Fatahalian al. 09] 

New: 2.5D Convex Hull 
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1.  Bound (e.g., with a rectangle) the triangle’s screen-space 
extent due to its shape (xy) 

2.  Iterate over the samples in that bound 

3.  Perform some xy      inside-outside test per sample 

4.  Shade the samples that pass 

2D Rasterization 

2D Rasterizer 

Geometry Shader 

Pixel Shader 

, motion (t), and defocus (uv) 

5D 

tuv 

The challenge: 
Tight 2D bounds yield high sample-test efficiency… 

but are hard to compute because of: 

•   Geometric Issues 
  Moving triangles carve bilinear patch edges 
  Triangles may cross z = 0 in space or time 

•   Hardware Constraints 
  Bound must be expressed as a triangle strip 
  Need small, constant space and time algorithm 

z = 0 



Bounding Defocus has been Solved 
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[Toth and Linder 08] 



Our Bounding Solution 
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z = 0 z = znear 

All z > znear: Cull “Normal”: All z < 0: Projected Hull 

“z=0 crossing”: zmin < znear and zmax > 0: Clip and Box 

-z +z 



Normal Case 
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z = 0 z = znear 

“Normal”: All z < 0: Projected Hull 

-z +z 



Normal Case 
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Projected Time-Continuous Triangle 2.5D Convex Hull Tristrip 



Normal Case 
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= 



z = 0 Crossing Case 
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z = 0 z = znear 

-z +z 



Extreme Example of z = 0 Case 
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Extreme Example of z = 0 Case 
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Extreme Example of z = 0 Case 
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Correct result for a moving camera 
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•  Cast one visibility ray per sample 
•  Set the pixel’s coverage mask 
•  Shade at most once per pixel 

•  Use ray differentials to determine anisotropic xytuv 
MIP-map filtering and level [Loviscach 05] 

MSAA 
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RESULTS 
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Multisample Rate: 1x 
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Multisample Rate: 4x 
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Multisample Rate: 8x 
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Multisample Rate: 16x 
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Multisample Rate: 64x 
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Defocus Blur 
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Multisample Rate: 1x 

29 



Multisample Rate: 4x 
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Multisample Rate: 8x 
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Multisample Rate: 16x 

32 



Multisample Rate: 64x 

33 



Multisample Rate: 256x 
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Motion Blur 

35 



Extended Motion Blur Example 

36 



Real-time stochastic rasterization is possible now 
•  Macrotriangles are much more efficient than micropolygons 

•  Convex hull radically increases STE 

•  New efficient hull and z=0 fallback solutions make hull viable 

Motion blur is very different from defocus blur 
•  Integrate post-processed defocus with stochastic motion blur and 

antialiasing 

Fixed-function rasterizer is a power-efficient iterator 

•  Address the warp branch-coherence problem 
•  Build a fixed function, time-continuous rasterization unit? 

Conclusions & Future Work 
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    Special thanks to Heiko Friedrich for helping 
to render images in this talk. 
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http://research.nvidia.com 



ADDITIONAL MATERIAL 
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Performance 

40 

Frames per second at 1920x1080 on GeForce GT 280 
including shadow maps, shading, and tone mapping 

GeForce GTX 480 Results are 2x-3x faster 

MSAA 4x 
SSAA 4x 



•  Project all non-culled (≤ 6) vertices 
•  Project all (≤ 12) intersections of edges with z=zn 
•  Bound these (≤ 18) points with a 2D box 
•  (For defocus, grow the box by the worst circle of 

confusion) 
•  Cull if the box is outside the viewport (common) 

•  Intuition:  
•  A triangle is the hull of its vertices 

•  A quadratic patch lies within the hull of its control points 

•  The hull of the edges is the hull of the moving triangle 

z = 0 Crossing Case 
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•  For triangles entirely culled by z=0 
•  Cull! 

•  For triangles entirely not culled by z=0 
•  Project all 6 vertices 

•  Solve for 2D convex hull [new algorithm] 

•  For triangles crossing z=0 
•  Solve for 2D bounding box of non-clipped portion [new 

algorithm] 

Our Temporal Bounding Solution 
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Bounding Motion is Hard 
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z = 0 



Sample Test Efficiency 
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AABB Convex Hull 

Scene 


