
Morgan McGuire Eric Enderton Peter Shirley David Luebke

NVIDIA Research
Williams College

NVIDIA Research

1

Real-time stochastic rasterization of micropolygons
would require 70 of today’s GPUs. [BRUNHAVER ET AL. 10]

Micropolygons are too small for efficient sampling.
[BRUNHAVER ET AL. 10, BOULOS ET AL. 10]

What about efficient macropolygon sampling?

•  Defocus blur from non-pinhole lens

•  Motion blur from non-zero exposure time

•  Interoperate with spatial antialiasing (MSAA)

•  Real time on current hardware architectures and APIs

Goals

2

•  Vertices move with constant velocity during a frame

 [e.g., Akenine-Möller et al. 07, Fatahalian et al. 09, Ragan-Kelly et al. 10]

•  Shading does not vary significantly across a pixel or an exposure interval
(i.e., separate visibility and shading)

 [e.g., Reeves et al. 87, Cook et al. 87, Fatahalian et al. 09, Ragan-Kelly et al. 10]

•  Target “macro triangles” with edges longer than:

•  intra-frame motion

•  circle of confusion (defocus) radius

(works for any triangles, but efficiency increases with projected area)

Assumptions

3

Real-time stochastic rasterization is possible now
Motion blur is very different from defocus blur

Stochastic rasterization works well for motion blur
•  Substantially better interactions than post-processing methods

•  8x MSAA is probably good enough and today’s GPUs are built for it

•  Constant velocity approximation yields surprisingly good results

Conclusions

4

Stochastic sampling is inefficient for defocus
•  Drawbacks of post-processing alternatives aren’t that bad here

•  Requires many samples (>64) to converge

•  Defocussed triangles near the lens can fill the screen

Scene-Specific 2D Filtering and Compositing
•  Unavoidable artifacts: loss of parallax, dim bokeh, color

bleeding, black halos

•  Extremely fast for controlled scenes and scenarios, e.g.,
cinematic, car game or small camera rotations

Accumulation Buffering (brute force)
•  Physically correct

•  Straightforward, but massively overshades

Stochastic Rendering
•  Physically correct and reasonable shading cost

•  Easy for rays, tricky for rasterization

State of the Art

5

Burnout Paradise [Criterion Games 09]
Just Cause 2 [Avalance & Eidos 10]

Scene-Specific 2D Filtering and Compositing
•  Unavoidable artifacts: loss of parallax, dim bokeh, color

bleeding, black halos

•  Extremely fast for controlled scenes and scenarios, e.g.,
cinematic, car game or small camera rotations

Accumulation Buffering (brute force)
•  Physically correct

•  Straightforward, but massively overshades

Stochastic Rendering
•  Physically correct and reasonable shading cost

•  Easy for rays/REYES, tricky to make efficient

State of the Art

6

7

conventional(t, u, v):
 for each x, y sample and triangle Q:
 t*, u*, v* = t, u, v

 z,α,β = intersect(Q, x, y, t*, u*, v*)
 if z < depth[x, y]:
 color[x, y] = shade(α, β, ts, us, vs)
 depth[x, y] = z
 return color

stochastic():
 for each x, y sample and triangle Q:
 t*, u*, v* = hash(x, y)
 z,α,β = intersect(Q, x, y, t*, u*, v*)
 if z < depth[x, y]:
 color[x, y] = shade(α, β, ts, us, vs)
 depth[x, y] = z
 return color

accumulation():
 for each t, u, v sample:
 temp += conventional(t, u, v)
 ++N
 return temp / N

O(WHN)

O(WH) O(WH)

5 Sampling Parameters:
xy position on screen
t time
uv lens position

t* intersection time
ts shade time
t iteration parameter

no blur noisy

ghosts

[Cook et al. 84, 86, 87]

1.  Bound (e.g., with a rectangle) the triangle’s screen-space
extent due to its shape (xy)

2.  Iterate over the samples in that bound

3.  Perform some xy inside-outside test per sample

4.  Shade the samples that pass

2D Rasterization

8

2D Rasterizer

Geometry Shader

Pixel Shader

, motion (t), and defocus (uv)

5D

tuv

9

[Wexler et al. 05]

1.  Bound (e.g., with a rectangle) the triangle’s screen-space
extent due to its shape (xy)

2.  Iterate over the samples in that bound

3.  Perform some xy inside-outside test per sample

4.  Shade the samples that pass

2D Rasterization

2D Rasterizer

Geometry Shader

Pixel Shader

, motion (t), and defocus (uv)

5D

tuv

[Akenine-Möller et al. 07]

[Fatahalian al. 09]

New: 2.5D Convex Hull

10

1.  Bound (e.g., with a rectangle) the triangle’s screen-space
extent due to its shape (xy)

2.  Iterate over the samples in that bound

3.  Perform some xy inside-outside test per sample

4.  Shade the samples that pass

2D Rasterization

2D Rasterizer

Geometry Shader

Pixel Shader

, motion (t), and defocus (uv)

5D

tuv

The challenge:
Tight 2D bounds yield high sample-test efficiency…

but are hard to compute because of:

•  Geometric Issues
  Moving triangles carve bilinear patch edges
  Triangles may cross z = 0 in space or time

•  Hardware Constraints
  Bound must be expressed as a triangle strip
  Need small, constant space and time algorithm

z = 0

Bounding Defocus has been Solved

11

[Toth and Linder 08]

Our Bounding Solution

12

z = 0 z = znear

All z > znear: Cull “Normal”: All z < 0: Projected Hull

“z=0 crossing”: zmin < znear and zmax > 0: Clip and Box

-z +z

Normal Case

13

z = 0 z = znear

“Normal”: All z < 0: Projected Hull

-z +z

Normal Case

14
Projected Time-Continuous Triangle 2.5D Convex Hull Tristrip

Normal Case

15

=

z = 0 Crossing Case

16

z = 0 z = znear

-z +z

Extreme Example of z = 0 Case

17

Extreme Example of z = 0 Case

18

Extreme Example of z = 0 Case

19

Correct result for a moving camera

20

•  Cast one visibility ray per sample
•  Set the pixel’s coverage mask
•  Shade at most once per pixel

•  Use ray differentials to determine anisotropic xytuv
MIP-map filtering and level [Loviscach 05]

MSAA

21

RESULTS

22

Multisample Rate: 1x

23

Multisample Rate: 4x

24

Multisample Rate: 8x

25

Multisample Rate: 16x

26

Multisample Rate: 64x

27

Defocus Blur

28

Multisample Rate: 1x

29

Multisample Rate: 4x

30

Multisample Rate: 8x

31

Multisample Rate: 16x

32

Multisample Rate: 64x

33

Multisample Rate: 256x

34

Motion Blur

35

Extended Motion Blur Example

36

Real-time stochastic rasterization is possible now
•  Macrotriangles are much more efficient than micropolygons

•  Convex hull radically increases STE

•  New efficient hull and z=0 fallback solutions make hull viable

Motion blur is very different from defocus blur
•  Integrate post-processed defocus with stochastic motion blur and

antialiasing

Fixed-function rasterizer is a power-efficient iterator

•  Address the warp branch-coherence problem
•  Build a fixed function, time-continuous rasterization unit?

Conclusions & Future Work

37

 Special thanks to Heiko Friedrich for helping
to render images in this talk.

38

http://research.nvidia.com

ADDITIONAL MATERIAL

39

Performance

40

Frames per second at 1920x1080 on GeForce GT 280
including shadow maps, shading, and tone mapping

GeForce GTX 480 Results are 2x-3x faster

MSAA 4x
SSAA 4x

•  Project all non-culled (≤ 6) vertices
•  Project all (≤ 12) intersections of edges with z=zn
•  Bound these (≤ 18) points with a 2D box
•  (For defocus, grow the box by the worst circle of

confusion)
•  Cull if the box is outside the viewport (common)

•  Intuition:
•  A triangle is the hull of its vertices

•  A quadratic patch lies within the hull of its control points

•  The hull of the edges is the hull of the moving triangle

z = 0 Crossing Case

41

•  For triangles entirely culled by z=0
•  Cull!

•  For triangles entirely not culled by z=0
•  Project all 6 vertices

•  Solve for 2D convex hull [new algorithm]

•  For triangles crossing z=0
•  Solve for 2D bounding box of non-clipped portion [new

algorithm]

Our Temporal Bounding Solution

42

Bounding Motion is Hard

43

z = 0

Sample Test Efficiency

44
AABB Convex Hull

Scene

