
Background

•  Ray casting in usual acceleration hierarchies is tree
traversal
•  kd-trees

•  Bounding volume hierarchies

•  Typically, traversal requires a stack

•  Traversal stack is expensive
•  Storage

•  Bandwidth

Closer Look at Traversal

•  Basic non-recursive tree traversal

while (not terminated)
 if (not a leaf node)
 fetch bounds of children of current node
 check which children are intersected by the ray
 if (intersections)
 sort intersected children according to proximity
 make closest intersected child the current node
 push other children into stack
 else
 pop stack, terminate if empty
 end if
 else
 process primitives in leaf node
 pop stack, terminate if empty
 end if
end while

Closer Look at Traversal

•  Basic non-recursive tree traversal

while (not terminated)
 if (not a leaf node)
 fetch bounds of children of current node
 check which children are intersected by the ray
 if (intersections)
 sort intersected children according to proximity
 make closest intersected child the current node
 push other children into stack
 else
 pop stack, terminate if empty
 end if
 else
 process primitives in leaf node
 pop stack, terminate if empty
 end if
end while

Stackless kd-Tree Traversal

•  [Foley and Sugerman 2005]

while (not terminated) (ray not shrunk to a point)
 if (not a leaf node)
 fetch bounds of children of current node
 check which children are intersected by the ray
 if (intersections)
 sort intersected children according to proximity
 make closest intersected child the current node
 push other children into stack do nothing
 else
 pop stack, terminate if empty shorten ray, restart
 end if
 else
 process primitives in leaf node
 pop stack, terminate if empty shorten ray, restart
 end if
end while

Why Does this Work?

Near child Far child Original ray
before restart

Split
plane

Node

Intersect!
Go here Forget

Why Does this Work?

Near child Far child

Shortened
ray after
restart

Split
plane

Node

Intersect!
Go here (not intersected)

kd-Trees and Other BSP Trees

Sorted according to traversal order

kd-Trees and Other BSP Trees

Sorted according to traversal order

Ray part A Ray part B

Processed
nodes

Unprocessed
nodes

Short-Stack kd-tree Traversal

•  [Horn et al. 2007]

•  Store only n topmost stack entries

•  Shorten ray and restart when stack is exhausted

•  With n=3, only 3% too many nodes processed
•  Stackless (n=0) roughly doubles the amount of work

What About BVH?

•  In BVH, nodes may overlap

 Unprocessed part of BVH tree does not correspond to
a shortened ray

 Restarting traversal by shortening the ray is not
possible

 Stackless and short-stack traversal cannot be used

Example of Impossible Restart

A

A1
A2

B1

B2

B

A B

A1 A2 B1 B2

Example of Impossible Restart

A

A1
A2

B1

B2

B

A B

A1 A2 B1 B2

Processed
nodes

Run out of stack
here, need to restart
after processing A2

Example of Impossible Restart

A

A1
A2

B1

B2

B

A B

A1 A2 B1 B2

Processed
nodes

Does not work,
misses B entirely

Example of Impossible Restart

A

A1
A2

B1

B2

B

A B

A1 A2 B1 B2

Processed
nodes

Does not work,
revisits A and A1

Example of Impossible Restart

A

A1
A2

B1

B2

B

A B

A1 A2 B1 B2

Processed
nodes Problem: Any ray that covers

B1 will revisit A and A2

Solution: Restart Trail

•  If we sort a BVH according to ray traversal order, we
can partition it into processed and unprocessed parts
•  Unlike in kd-trees, these parts do not correspond to ray

segments, but there’s no need to worry about that

•  Therefore, we can cheaply store which part of the
hierarchy has been processed

•  Upon restart, consult the information to steer the
traversal to the correct part of the tree

Processed vs Unprocessed Nodes

Sorted according to traversal order

Processed
nodes

Unprocessed
nodes

Finding the Next Unprocessed Node

Sorted according to traversal order

This is the node
we need to find

0

1

1

Restart
trail

Restart Trail Encoding, Issues

•  One bit per level is enough
•  This leaves many options for the actual encoding

•  Must remain consistent during traversal
•  What if only one child node is intersected?

•  What if the ray is shortened from the end during traversal?

•  Needs to be updated efficiently
•  After processing a node, we want to update the trail without

remembering anything about our ancestors

•  Should be transparent during traversal
•  No splitting into before-restart and after-restart codepaths

Our Encoding Scheme

•  0 = Node not visited yet OR node has two children to
be traversed, subtree under near child not fully
traversed

•  1 = Node has one child to be traversed OR node has
two children to be traversed, subtree under near child
has been fully traversed

•  One sentinel bit on top of actual trail
•  Allows easy detection of when to terminate the traversal

Use of Trail During Traversal

•  If node has two children
•  0 = Go to near child

•  1 = Go to far child

•  When initialized to all zeros, does not affect usual
traversal order

•  Always set bit when going through one-child node
•  Does not affect traversal, but enables efficient updates!

Efficient Updates

•  Other view of encoding:
•  0 = I have a far child that is not processed yet

•  1 = otherwise

•  Trail update must make trail point to next unprocessed
node

•  Find last zero bit, toggle it to one, clear the rest
•  Sounds suspiciously like binary addition

Traversal Example

0

0

0

0

…

0

Traversal Example

0

0

0

0

…

0

Traversal Example

0

0

0

0

…

0

Traversal Example

0

1

0

0

…

0

Traversal Example

0

0

1

0

…

0

Traversal Example

0

1

1

0

…

0

Traversal Example

0

1

1

0

…

0

Traversal Example

0

0

0

1

…

0

Traversal Example

0

0

1

1

…

0

Traversal Example

0

0

1

1

…

0

Traversal Example

0

0

0

0

…

1

Traversal Example

0

0

0

0

…

1

 I’m outta
here

Gotcha: Rays Shortened at the End

•  During traversal, primitive intersection may shorten the
ray at the end
•  Makes it possible to terminate traversal before ray exits scene

•  Can change two-child node into one-child node
•  Node has two children during descent, but only one during

restart

•  If not handled properly, this can cause multiple traversal

Trouble with Shortened Ray

0

0

…

…

Trouble with Shortened Ray

0

0

…

…

While traversing
this subtree

This branch
gets culled

Trouble with Shortened Ray

0

1

…

…

Trail is updated after this
subtree is processed

Trouble with Shortened Ray

0

1

…

…

Stack is exhausted, and
a restart is initiated

Trouble with Shortened Ray

0

1

…

…

The same subtree is
processed again

This node does not have a far child
anymore, so we cannot go there

Solving the Shortened Ray Problem

•  Notice which bit was toggled to one when updating trail

•  When traversing, detect if there is a one-child node on
this level

•  If so, the only explanation is that the far child was
culled

•  Proper action is to update trail and restart again

Practical Implementation

•  Keep trail and current level bit in registers
•  Set and query bits trivially using Boolean operations

•  Trail update
•  Find last zero above current level, toggle to one, clear the rest

 TrailReg &= -LevelReg;
 TrailReg += LevelReg;

•  Determining level pointer after trail update
•  Find last one
 temp = TrailReg >> 1;
 LevelReg = ((temp – 1) ^ temp) + 1;

Results

•  Overvisit factor of 2.2–2.4 for stackless traversal
•  Similar to results of Foley and Sugerman [2005]

•  Three-entry short stack causes 5–8% overvisit
•  Compared to 3% reported by Horn et al. [2007]

•  Possibly because two-child intersections are more frequent in
BVHs than kd-trees, yielding more restarts

Fairy Forest, 174K tris Conference, 282K tris

Results on Hardware

•  Restart trails were originally implemented in BVH ray
cast kernels

•  Used to improve performance for a long while, but did
not pay off in the most optimized variants

•  Not tested on Fermi hardware yet
•  Cache trashing caused by stack traffic could make stackless

(or register-only) traversal attractive again

Possible Use Cases

•  Situations where
•  Not enough local storage for storing full traversal stack

•  Not enough memory bandwidth for stack traffic

•  Custom traversal hardware?
•  Cleaner memory interface

•  Read-only memory client

•  Pays off whenever cost of extra node traversal is less
than cost of stack pushes and pops

Extensions, Future Work

•  Storing two bits per level to avoid doing node
intersection tests again
•  Avoiding intersection tests might not pay off on wide SIMD

•  Extension to higher branching factors

•  Could a similar approach be applied in other kinds of
traversals?
•  e.g. closest-point and kNN searches for density estimation

Thank You

•  Questions

