
Architecture Considerations for
Tracing Incoherent Rays

Timo Aila, Tero Karras
NVIDIA Research

•  Our research question:
•  What can be done if memory bandwidth becomes the primary

bottleneck in ray tracing?

•  Test setup
•  Architecture overview
•  Optimizing stack traffic
•  Optimizing scene traffic
•  Results
•  Future work

Outline

1

•  Hypothetical parallel architecture
•  All measurements done on custom simulator

•  Assumptions
•  Processors and L1 are fast (not bottleneck)
•  L1s ↔ Last-level cache, LLC, may be a bottleneck
•  LLC ↔ DRAM assumed primary bottleneck

•  Minimum transfer size 32 bytes (DRAM atom)

•  Measurements include all memory traffic

Test setup – methodology

2

•  Simulator cannot deal with large scenes
•  Two organic scenes with difficult structure
•  One car interior with simple structure
•  BVH, 32 bytes per node/triangle

Test setup – scenes

3

Vegetation Hairball Veyron
1.1M tris 2.8M tris 1.3M tris
629K BVH nodes 1089K BVH nodes 751 BVH nodes
86Mbytes 209Mbytes 47Mbytes

•  In global illumination rays typically
•  Start from surface
•  Need closest intersection
•  Are not coherent

•  We used diffuse interreflection rays
•  16 rays per primary hit point, 3M rays in total
•  Submitted to simulator as batches of 1M rays

•  Ray ordering
•  Random shuffle, ~worst possible order
•  Morton (6D space-filling curve), ~best possible order
•  Ideally ray ordering wouldn’t matter

Test setup – rays

4

•  We copy several parameters from Fermi:
•  16 processors, each with private L1 (48KB, 128B lines, 6-way)
•  Shared L2 (768KB, 128-byte lines, 16-way)
•  Otherwise our architecture is not Fermi

•  Additionally
•  Write-back caches with LRU eviction policy

•  Processors
•  32-wide SIMD, 32 warps** for latency hiding
•  Round robin warp scheduling
•  Fast. Fixed function or programmable, we don’t care

** Warp = static collection of threads that execute together in SIMD fashion

Architecture (1/2)

5

•  Each processor is bound to an input queue
•  Launcher fetches work

•  Compaction
•  When warp has <50% threads alive, terminate warp, re-launch
•  Improves SIMD utilization from 25% to 60%
•  Enabled in all tests

Architecture (2/2)

6

•  Test setup
•  Architecture overview
•  Optimizing stack traffic

•  Baseline ray tracer and how to reduce its stack traffic

•  Optimizing scene traffic
•  Results
•  Future work

Outline

7

•  While-while CUDA kernel [Aila & Laine 2009]
•  One-to-one mapping between threads and rays
•  Stacks interleaved in memory (CUDA local memory)

•  1st stack entry from 32 rays, 2nd stack entry from 32 rays,…
•  Good for coherent rays, less so for incoherent

•  50% of traffic caused by traversal stacks with random sort!

Stack traffic – baseline method

8

•  Non-interleaved stacks, cached in L1
•  Requires 128KB of L1 (32x32x128B), severe thrashing

•  Keep N latest entries in registers [Horn07]
•  Rest in DRAM, optimized direct DRAM communication
•  N=4 eliminates almost all stack-related traffic
•  16KB of RF (1/8th of L1 requirements…)

Stack traffic – stacktop caching

9

•  Test setup
•  Architecture overview
•  Optimizing stack traffic
•  Optimizing scene traffic

•  Treelets
•  Treelet assignment
•  Queues
•  Scheduling

•  Results
•  Future work

Outline

10

•  Scene traffic about 100X theoretical minimum
•  Each ray traverses independently
•  Concurrent working set is large
•  Quite heavily dependent on ray ordering

Scene traffic – treelets (1/2)

11

•  Divide tree into treelets
•  Extends [Pharr97, Navratil07]
•  Each treelet fits into cache (nodes, geometry)
•  Assign one queue per treelet
•  Enqueue a ray that enters another treelet (red), suspend

•  Encoded to node index

•  When many rays collected
•  Bind treelet/queue to processor(s)
•  Amortizes scene transfers
•  Repeat until done

•  Ray in 1 treelet at a time
•  Can go up as well

Scene traffic – Treelets (2/2)

12

•  Done when BVH constructed
•  Treelet index encoded into node index

•  Tradeoff
•  Treelets should fit into cache; we set max mem footprint
•  Treelet transitions cause non-negligible memory traffic

•  Minimize total surface area of treelets
•  Probability to hit a treelet proportional to surface area
•  Optimization done using dynamic programming
•  More details in paper
•  E.g. 15000 treelets for Hairball (max footprint 48KB)

Treelet assignment

13

•  Queues contain ray states (16B, current hit, …)
•  Stacktop flushed on push, Ray (32B) re-fetched on pop

•  Queue traffic not cached
•  Do not expect to need a ray for a while when postponed

•  Bypassing
•  Target queue already bound to some processor?
•  Forward ray + ray state + stacktop directly to that processor
•  Reduces DRAM traffic

Queues (1/2)

14

•  Static or dynamic memory allocation?

•  Static
•  Simple to implement
•  Memory consumption proportional to scene size
•  Queue can get full, must pre-empt to avoid deadlocks

•  Dynamic
•  Need a fast pool allocator
•  Memory consumption proportional to ray batch size
•  Queues never get full, no pre-emption

•  We implemented both, used dynamic

Queues (2/2)

15

•  Task: Bind processors to queues
•  Goal: Minimize binding changes

•  Lazy
•  Input queue gets empty  bind

 to the queue that has most rays
•  Optimal with one processor…
•  Binds many processors to the

 same queue
•  Prefers L2-sized treelets
•  Expects very fast L1↔L2
•  Unrealistic?

Scheduling (1/2)

Vegetation, Random

•  Balanced
•  Queues request #processors
•  Granted based on “who needs most”
•  Processors (often) bound to different queues  more bypassing
•  Prefers L1-sized treelets
•  Used in results

Scheduling (2/2)

Vegetation, Random

•  Scene traffic reduced ~90%
•  Unfortunately aux traffic (queues + rays + stacks) dominates

•  Scales well with #processors
•  Virtually independent of ray ordering

•  2-5X difference for baseline, now <10%

Treelet results

18

•  Scene traffic mostly solved
•  Open question: how to reduce auxiliary traffic?

•  Necessary features generally useful
•  Queues [Sugerman2009]
•  Pool allocation [Lalonde2009]
•  Compaction

•  Today memory bw perhaps not #1 bottleneck,
but likely to become one
•  Instruction set improvements
•  Custom units [RPU, SaarCOR]
•  Flops still scaling faster than bandwidth
•  Bandwidth is expensive to build, consumes power

Conclusions

19

•  Complementary memory traffic reduction
•  Wide trees
•  Multiple threads per ray? Reduces #rays in flight
•  Compression?

•  Batch processing vs. continuous flow of rays
•  Guaranteeing fairness?
•  Memory allocation?

Future work

20

•  Acknowledgements
•  Samuli Laine for Vegetation and Hairball
•  Peter Shirley and Lauri Savioja for proofreading
•  Jacopo Pantaleoni, Martin Stich, Alex Keller, Samuli Laine,

David Luebke for discussions

Thank you for listening!

21

