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•  Our research question: 
•  What can be done if memory bandwidth becomes the primary 

bottleneck in ray tracing? 

•  Test setup 
•  Architecture overview 
•  Optimizing stack traffic 
•  Optimizing scene traffic 
•  Results 
•  Future work 

Outline 

1 



•  Hypothetical parallel architecture 
•  All measurements done on custom simulator 

•  Assumptions 
•  Processors and L1 are fast (not bottleneck) 
•  L1s ↔ Last-level cache, LLC, may be a bottleneck 
•  LLC ↔ DRAM assumed primary bottleneck 

•  Minimum transfer size 32 bytes (DRAM atom) 

•  Measurements include all memory traffic 

Test setup – methodology 
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•  Simulator cannot deal with large scenes 
•  Two organic scenes with difficult structure 
•  One car interior with simple structure 
•  BVH, 32 bytes per node/triangle 

Test setup – scenes 
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Vegetation Hairball Veyron 
1.1M tris 2.8M tris 1.3M tris 
629K BVH nodes 1089K BVH nodes 751 BVH nodes 
86Mbytes 209Mbytes 47Mbytes 



•  In global illumination rays typically 
•  Start from surface 
•  Need closest intersection 
•  Are not coherent 

•  We used diffuse interreflection rays 
•  16 rays per primary hit point, 3M rays in total 
•  Submitted to simulator as batches of 1M rays 

•  Ray ordering 
•  Random shuffle, ~worst possible order 
•  Morton (6D space-filling curve), ~best possible order 
•  Ideally ray ordering wouldn’t matter 

Test setup – rays 
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•  We copy several parameters from Fermi: 
•  16 processors, each with private L1 (48KB, 128B lines, 6-way) 
•  Shared L2 (768KB, 128-byte lines, 16-way) 
•  Otherwise our architecture is not Fermi 

•  Additionally 
•  Write-back caches with LRU eviction policy  

•  Processors 
•  32-wide SIMD, 32 warps** for latency hiding 
•  Round robin warp scheduling 
•  Fast. Fixed function or programmable, we don’t care 

** Warp = static collection of threads that execute together in SIMD fashion 

Architecture (1/2) 
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•  Each processor is bound to an input queue 
•  Launcher fetches work 

•  Compaction 
•  When warp has <50% threads alive, terminate warp, re-launch 
•  Improves SIMD utilization from 25% to 60% 
•  Enabled in all tests 

Architecture (2/2) 
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•  Test setup 
•  Architecture overview 
•  Optimizing stack traffic 

•  Baseline ray tracer and how to reduce its stack traffic 

•  Optimizing scene traffic 
•  Results 
•  Future work 

Outline 
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•  While-while CUDA kernel [Aila & Laine 2009] 
•  One-to-one mapping between threads and rays 
•  Stacks interleaved in memory (CUDA local memory) 

•  1st stack entry from 32 rays, 2nd stack entry from 32 rays,… 
•  Good for coherent rays, less so for incoherent 

•  50% of traffic caused by traversal stacks with random sort! 

Stack traffic – baseline method 
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•  Non-interleaved stacks, cached in L1 
•  Requires 128KB of L1 (32x32x128B), severe thrashing 

•  Keep N latest entries in registers [Horn07] 
•  Rest in DRAM, optimized direct DRAM communication 
•  N=4 eliminates almost all stack-related traffic 
•  16KB of RF (1/8th of L1 requirements…) 

Stack traffic – stacktop caching 
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•  Test setup 
•  Architecture overview 
•  Optimizing stack traffic 
•  Optimizing scene traffic 

•  Treelets 
•  Treelet assignment 
•  Queues 
•  Scheduling 

•  Results 
•  Future work 

Outline 
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•  Scene traffic about 100X theoretical minimum 
•  Each ray traverses independently 
•  Concurrent working set is large 
•  Quite heavily dependent on ray ordering 

Scene traffic – treelets (1/2) 
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•  Divide tree into treelets 
•  Extends [Pharr97, Navratil07] 
•  Each treelet fits into cache (nodes, geometry)  
•  Assign one queue per treelet 
•  Enqueue a ray that enters another treelet (red), suspend 

•  Encoded to node index 

•  When many rays collected 
•  Bind treelet/queue to processor(s) 
•  Amortizes scene transfers 
•  Repeat until done 

•  Ray in 1 treelet at a time 
•  Can go up as well 

Scene traffic – Treelets (2/2) 
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•  Done when BVH constructed 
•  Treelet index encoded into node index 

•  Tradeoff 
•  Treelets should fit into cache; we set max mem footprint 
•  Treelet transitions cause non-negligible memory traffic 

•  Minimize total surface area of treelets 
•  Probability to hit a treelet proportional to surface area 
•  Optimization done using dynamic programming 
•  More details in paper 
•  E.g. 15000 treelets for Hairball (max footprint 48KB) 

Treelet assignment 
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•  Queues contain ray states (16B, current hit, …) 
•  Stacktop flushed on push, Ray (32B) re-fetched on pop 

•  Queue traffic not cached 
•  Do not expect to need a ray for a while when postponed 

•  Bypassing 
•  Target queue already bound to some processor? 
•  Forward ray + ray state + stacktop directly to that processor 
•  Reduces DRAM traffic 

Queues (1/2) 
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•  Static or dynamic memory allocation? 

•  Static 
•  Simple to implement 
•  Memory consumption proportional to scene size 
•  Queue can get full, must pre-empt to avoid deadlocks 

•  Dynamic 
•  Need a fast pool allocator 
•  Memory consumption proportional to ray batch size 
•  Queues never get full, no pre-emption 

•  We implemented both, used dynamic 

Queues (2/2) 
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•  Task: Bind processors to queues 
•  Goal: Minimize binding changes 

•  Lazy 
•  Input queue gets empty  bind 

 to the queue that has most rays 
•  Optimal with one processor… 
•  Binds many processors to the  

 same queue 
•  Prefers L2-sized treelets 
•  Expects very fast L1↔L2 
•  Unrealistic? 

Scheduling (1/2) 

Vegetation, Random 



•  Balanced 
•  Queues request #processors 
•  Granted based on “who needs most” 
•  Processors (often) bound to different queues  more bypassing 
•  Prefers L1-sized treelets 
•  Used in results 

Scheduling (2/2) 

Vegetation, Random 



•  Scene traffic reduced ~90% 
•  Unfortunately aux traffic (queues + rays + stacks) dominates 

•  Scales well with #processors 
•  Virtually independent of ray ordering 

•  2-5X difference for baseline, now <10% 

Treelet results 
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•  Scene traffic mostly solved 
•  Open question: how to reduce auxiliary traffic? 

•  Necessary features generally useful 
•  Queues [Sugerman2009] 
•  Pool allocation [Lalonde2009] 
•  Compaction 

•  Today memory bw perhaps not #1 bottleneck, 
but likely to become one 
•  Instruction set improvements 
•  Custom units [RPU, SaarCOR] 
•  Flops still scaling faster than bandwidth 
•  Bandwidth is expensive to build, consumes power 

Conclusions 
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•  Complementary memory traffic reduction 
•  Wide trees 
•  Multiple threads per ray? Reduces #rays in flight 
•  Compression? 

•  Batch processing vs. continuous flow of rays 
•  Guaranteeing fairness? 
•  Memory allocation? 

Future work 
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